Suppr超能文献

含硼二吡咯单元和大环的共价连接分子二元体系中激发能量转移的建模

Modelling excitation energy transfer in covalently linked molecular dyads containing a BODIPY unit and a macrocycle.

作者信息

Azarias Cloé, Cupellini Lorenzo, Belhboub Anouar, Mennucci Benedetta, Jacquemin Denis

机构信息

Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, France.

出版信息

Phys Chem Chem Phys. 2018 Jan 17;20(3):1993-2008. doi: 10.1039/c7cp06814j.

Abstract

With the help of time-dependent density functional theory coupled to an implicit solvation scheme (the polarisable continuum model), we have investigated the singlet-singlet Excitation Energy Transfer (EET) process in a panel of large BODIPY-macrocycle dyads. We have first considered different strategies to compute the electronic coupling in a representative BODIPY-zinc porphyrin assembly and, next evaluated the performances of the chosen computational protocol on several BODIPY-porphyrinoid molecular architectures for which the EET rate constants have been experimentally measured. This step showed the robustness of our approach, which is able to reproduce the magnitude of the measured rate constants in most cases. We have finally applied the validated methodology on newly designed dyads combining a BODIPY unit and an azacalixphyrin macrocycle, a recently synthesised porphyrin analogue that displays exceptional optical properties. This work allowed us to propose new molecular architectures presenting improved properties and also to highlight the interest of using azacalixphyrin as a building block in molecular light-harvesting antennas.

摘要

借助与隐式溶剂化方案(可极化连续介质模型)相结合的含时密度泛函理论,我们研究了一组大型硼二吡咯 - 大环二元体系中的单重态 - 单重态激发能量转移(EET)过程。我们首先考虑了不同的策略来计算代表性硼二吡咯 - 锌卟啉组装体中的电子耦合,接下来评估了所选计算方案在几种已通过实验测量EET速率常数的硼二吡咯 - 卟啉类分子结构上的性能。这一步展示了我们方法的稳健性,该方法在大多数情况下能够重现所测速率常数的大小。我们最终将经过验证的方法应用于新设计的二元体系,该体系结合了一个硼二吡咯单元和一个氮杂杯卟啉大环,氮杂杯卟啉是一种最近合成的卟啉类似物,具有优异光学性质。这项工作使我们能够提出具有改进性质的新分子结构,并突出了使用氮杂杯卟啉作为分子光捕获天线构建单元的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验