Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.
Nanoscale. 2018 Jan 25;10(4):1695-1703. doi: 10.1039/c7nr06780a.
The polymer/filler interface is usually considered as a thermal barrier in composites due to the mismatch of the phonon frequency across the interface. How the interface plays its role in thermal conduction has not yet been fully understood. In this work, scanning thermal microscopy is used to map the probe current across the composite interface and force-displacement curves are obtained to assess the polymer stiffness. The microscale stiffness-thermal conduction relationship is investigated at the composite interface in three representative cases: a single aggregated particle domain, two neighboring particle domains and two parallelly aligned particle chains. In the studied poly(vinyl alcohol) (PVA)/FeO composites, it is revealed that the interface property dominates the thermal conduction behavior rather than particle percolation. The long range order of polymer chains surrounding the particle domains is responsible for the enhanced crystallinity and thermal conductivity of the composites. With magnetic alignment of FeO particles, PVA crystallinity and thermal conductivity can be further enhanced. The macroscopic thermal conductivity measurement is highly consistent with the microscale observation. Specifically, with only 2.3 vol% loading of FeO in PVA, the thermal conductivity can be increased by 56% to 0.42 W m K. By the magnetic alignment of the particles at the same loading, 133% enhancement of thermal conductivity (∼0.63 W m K) can be achieved. This work presents an experimental study on the exploration of the interface property-thermal conductivity relationship in differently structured micro-domains and reveals the positive role of the composite interface in thermal conduction.
聚合物/填料界面通常被认为是复合材料中的热障,因为界面两侧的声子频率不匹配。界面在热传导中如何发挥作用尚未完全理解。在这项工作中,扫描热显微镜用于绘制复合材料界面上的探针电流,并获得力-位移曲线以评估聚合物的刚度。在三个具有代表性的案例中研究了复合材料界面的微尺度刚度-热传导关系:单个聚集颗粒域、两个相邻颗粒域和两个平行排列的颗粒链。在研究的聚乙烯醇(PVA)/FeO 复合材料中,揭示了界面特性主导热传导行为,而不是颗粒渗流。颗粒域周围聚合物链的长程有序性是复合材料增强结晶度和热导率的原因。通过 FeO 颗粒的磁性排列,可以进一步提高 PVA 的结晶度和热导率。宏观热导率测量与微尺度观察高度一致。具体来说,在 PVA 中仅添加 2.3 体积%的 FeO,热导率可提高 56%至 0.42 W m K。通过在相同负载下对颗粒进行磁性排列,热导率可提高 133%(约 0.63 W m K)。这项工作对不同结构微域中界面特性-热导率关系的探索进行了实验研究,揭示了复合材料界面在热传导中的积极作用。