Suppr超能文献

工程化心脏组织补片在心外膜植入后保持结构和电性能。

Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation.

机构信息

Duke University, Department of Biomedical Engineering, Durham, NC, USA.

Duke University Medical Center, Department of General Surgery, Durham, NC, USA.

出版信息

Biomaterials. 2018 Mar;159:48-58. doi: 10.1016/j.biomaterials.2018.01.002. Epub 2018 Jan 3.

Abstract

Functional cardiac tissue engineering holds promise as a candidate therapy for myocardial infarction and heart failure. Generation of "strong-contracting and fast-conducting" cardiac tissue patches capable of electromechanical coupling with host myocardium could allow efficient improvement of heart function without increased arrhythmogenic risks. Towards that goal, we engineered highly functional 1 cm × 1 cm cardiac tissue patches made of neonatal rat ventricular cells which after 2 weeks of culture exhibited force of contraction of 18.0 ± 1.4 mN, conduction velocity (CV) of 32.3 ± 1.8 cm/s, and sustained chronic activation when paced at rates as high as 8.7 ± 0.8 Hz. Patches transduced with genetically-encoded calcium indicator (GCaMP6) were implanted onto adult rat ventricles and after 4-6 weeks assessed for action potential conduction and electrical integration by two-camera optical mapping of GCaMP6-reported Ca transients in the patch and RH237-reported action potentials in the recipient heart. Of the 13 implanted patches, 11 (85%) engrafted, maintained structural integrity, and conducted action potentials with average CVs and Ca transient durations comparable to those before implantation. Despite preserved graft electrical properties, no anterograde or retrograde conduction could be induced between the patch and host cardiomyocytes, indicating lack of electrical integration. Electrical properties of the underlying myocardium were not changed by the engrafted patch. From immunostaining analyses, implanted patches were highly vascularized and expressed abundant electromechanical junctions, but remained separated from the epicardium by a non-myocyte layer. In summary, our studies demonstrate generation of highly functional cardiac tissue patches that can robustly engraft on the epicardial surface, vascularize, and maintain electrical function, but do not couple with host tissue. The lack of graft-host electrical integration is therefore a critical obstacle to development of efficient tissue engineering therapies for heart repair.

摘要

功能性心脏组织工程有望成为心肌梗死和心力衰竭的候选治疗方法。生成能够与宿主心肌进行机电耦联的“强收缩和快速传导”的心脏组织贴片,可以在不增加心律失常风险的情况下有效改善心脏功能。为此,我们构建了由新生大鼠心室细胞制成的 1cm×1cm 的高度功能化的心脏组织贴片,在培养 2 周后,其收缩力为 18.0±1.4mN,传导速度(CV)为 32.3±1.8cm/s,当以高达 8.7±0.8Hz 的频率起搏时,可维持慢性激活。用遗传编码钙指示剂(GCaMP6)转导的贴片被植入成年大鼠心室,在 4-6 周后,通过双相机光学映射 GCaMP6 报告的贴片中的钙瞬变和 RH237 报告的受体心脏中的动作电位,评估动作电位的传导和电整合。在植入的 13 个贴片中,有 11 个(85%)植入成功,保持结构完整性,并以与植入前相当的平均 CV 和钙瞬变持续时间传导动作电位。尽管移植贴片保留了电生理特性,但在贴片和宿主心肌细胞之间不能诱导顺行或逆行传导,表明不存在电整合。植入贴片对底层心肌的电生理特性没有影响。从免疫染色分析来看,植入的贴片具有高度的血管化和丰富的机电连接,但仍被非心肌层与心外膜隔开。总之,我们的研究表明,能够在心脏外膜表面强力植入、血管化和维持电功能的高度功能化心脏组织贴片已经成功构建,但仍与宿主组织分离。因此,移植贴片与宿主组织之间缺乏电整合是心脏修复的高效组织工程治疗发展的关键障碍。

相似文献

1
Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation.
Biomaterials. 2018 Mar;159:48-58. doi: 10.1016/j.biomaterials.2018.01.002. Epub 2018 Jan 3.
2
Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts.
PLoS One. 2015 Jul 10;10(7):e0131446. doi: 10.1371/journal.pone.0131446. eCollection 2015.
4
Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model.
Tissue Eng Part A. 2014 Apr;20(7-8):1325-35. doi: 10.1089/ten.TEA.2013.0312. Epub 2014 Feb 6.
5
Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel.
J Tissue Eng Regen Med. 2017 Jan;11(1):153-163. doi: 10.1002/term.1895. Epub 2014 Apr 28.
6
A cardiac patch from aligned microvessel and cardiomyocyte patches.
J Tissue Eng Regen Med. 2018 Feb;12(2):546-556. doi: 10.1002/term.2568. Epub 2017 Nov 23.
7
Assessing the arrhythmogenic risk of engineered heart tissue patches through in silico application on infarcted ventricle models.
Comput Biol Med. 2023 Mar;154:106550. doi: 10.1016/j.compbiomed.2023.106550. Epub 2023 Jan 13.
8
Dynamic culture yields engineered myocardium with near-adult functional output.
Biomaterials. 2016 Dec;111:66-79. doi: 10.1016/j.biomaterials.2016.09.024. Epub 2016 Sep 30.

引用本文的文献

1
Materials Advances in Devices for Heart Disease Interventions.
Adv Mater. 2025 Jul;37(27):e2420114. doi: 10.1002/adma.202420114. Epub 2025 Apr 17.
2
Application of human cardiac organoids in cardiovascular disease research.
Front Cell Dev Biol. 2025 Mar 31;13:1564889. doi: 10.3389/fcell.2025.1564889. eCollection 2025.
3
In vitro vascularization improves in vivo functionality of human engineered cardiac tissues.
Acta Biomater. 2024 Nov 10. doi: 10.1016/j.actbio.2024.11.014.
4
SMAD3 mediates the specification of human induced pluripotent stem cell-derived epicardium into progenitors for the cardiac pericyte lineage.
Stem Cell Reports. 2024 Oct 8;19(10):1399-1416. doi: 10.1016/j.stemcr.2024.08.008. Epub 2024 Sep 26.
5
Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors.
Microsyst Nanoeng. 2024 Jul 11;10:96. doi: 10.1038/s41378-024-00692-7. eCollection 2024.
6
Engineered heart tissue: Design considerations and the state of the art.
Biophys Rev (Melville). 2024 Jun 20;5(2):021308. doi: 10.1063/5.0202724. eCollection 2024 Jun.
7
Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies.
Biomimetics (Basel). 2023 Oct 14;8(6):487. doi: 10.3390/biomimetics8060487.
8
An Experimental and Numerical Investigation of Cardiac Tissue-Patch Interrelation.
J Biomech Eng. 2023 Aug 1;145(8). doi: 10.1115/1.4062736.
10
Graft-host coupling changes can lead to engraftment arrhythmia: a computational study.
J Physiol. 2023 Jul;601(13):2733-2749. doi: 10.1113/JP284244. Epub 2023 Apr 25.

本文引用的文献

2
Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering.
J Am Coll Cardiol. 2017 Aug 8;70(6):766-775. doi: 10.1016/j.jacc.2017.06.012.
4
Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue.
Acta Biomater. 2017 Jun;55:120-130. doi: 10.1016/j.actbio.2017.04.027. Epub 2017 Apr 25.
6
In Vivo Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Neonatal and Adult Rat Hearts.
Stem Cell Reports. 2017 Feb 14;8(2):278-289. doi: 10.1016/j.stemcr.2016.10.009. Epub 2017 Jan 5.
7
Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells.
Sci Transl Med. 2016 Nov 2;8(363):363ra148. doi: 10.1126/scitranslmed.aaf8781.
8
Engineering prokaryotic channels for control of mammalian tissue excitability.
Nat Commun. 2016 Oct 18;7:13132. doi: 10.1038/ncomms13132.
9
Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts.
Nature. 2016 Oct 20;538(7625):388-391. doi: 10.1038/nature19815. Epub 2016 Oct 10.
10
Dynamic culture yields engineered myocardium with near-adult functional output.
Biomaterials. 2016 Dec;111:66-79. doi: 10.1016/j.biomaterials.2016.09.024. Epub 2016 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验