Nizovtseva I G, Galenko P K
Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.
Philos Trans A Math Phys Eng Sci. 2018 Feb 28;376(2113). doi: 10.1098/rsta.2017.0202.
The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder 2004 , 051605 (doi:10.1103/PhysRevE.70.051605); Elder 2007 , 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 , 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the [Formula: see text] method (Malfliet & Hereman 1996 , 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 , 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general [Formula: see text] solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general [Formula: see text] solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko 2015 , 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.
分析了液态与固态之间扩散界面的动力学。扩散界面被视为相场晶体模型(埃尔德,2004年,051605(doi:10.1103/PhysRevE.70.051605);埃尔德,2007年,064107(doi:10.1103/PhysRevB.75.064107))所预测的原子密度振幅的包络。晶体振幅向亚稳态液体中的传播由扩展的艾伦 - 卡恩型双曲方程(加连科和乔,2005年,046125(doi:10.1103/PhysRevE.71.046125))描述,通过[公式:见原文]方法(马尔夫利特和赫勒曼,1996年,563 - 568(doi:10.1088/0031 - 8949/54/6/003);瓦兹瓦兹,2004年,713 - 723(doi:10.1016/S0096 - 3003(03)00745 - 8))获得了该方程完整的解析行波解。行波的一般[公式:见原文]解基于双曲正切函数。连同其一组特解,在关于晶体前沿侵入亚稳态液体的特定任务示例中分析了一般[公式:见原文]解(加连科,2015年,1 - 10(doi:10.1016/j.physd.2015.06.002))。针对梯度流的各种弛豫时间,研究了驱动力对相场分布、振幅速度和关联长度的影响。本文是主题为“从原子界面到枝晶图案”的一部分。