Division of Geriatric Medicine and Gerontology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America.
Physiol Meas. 2018 Feb 28;39(2):02NT02. doi: 10.1088/1361-6579/aaa74d.
Using raw, sub-second-level accelerometry data, we propose and validate a method for identifying and characterizing walking in the free-living environment. We focus on sustained harmonic walking (SHW), which we define as walking for at least 10 s with low variability of step frequency.
We utilize the harmonic nature of SHW and quantify the local periodicity of the tri-axial raw accelerometry data. We also estimate the fundamental frequency of the observed signals and link it to the instantaneous walking (step-to-step) frequency (IWF). Next, we report the total time spent in SHW, number and durations of SHW bouts, time of the day when SHW occurred, and IWF for 49 healthy, elderly individuals.
The sensitivity of the proposed classification method was found to be 97%, while specificity ranged between 87% and 97% and the prediction accuracy ranged between 94% and 97%. We report the total time in SHW between 140 and 10 min d distributed between 340 and 50 bouts. We estimate the average IWF to be 1.7 steps-per-second.
We propose a simple approach for the detection of SHW and estimation of IWF, based on Fourier decomposition.
利用原始的、亚秒级别的加速度计数据,我们提出并验证了一种在自由活动环境中识别和描述行走的方法。我们专注于持续谐波行走(SHW),将其定义为至少持续 10 秒且步频变化较小的行走。
我们利用 SHW 的谐波特性,并量化三轴原始加速度计数据的局部周期性。我们还估计观察到的信号的基频,并将其与即时行走(步与步)频率(IWF)联系起来。接下来,我们报告 49 名健康老年人进行 SHW 的总时间、SHW 回合的数量和持续时间、SHW 发生的时间以及 IWF。
所提出的分类方法的灵敏度为 97%,特异性在 87%到 97%之间,预测准确性在 94%到 97%之间。我们报告的 SHW 总时间在 140 到 10 分钟之间,分布在 340 到 50 个回合之间。我们估计平均 IWF 为 1.7 步/秒。
我们提出了一种基于傅里叶分解的简单方法来检测 SHW 和估计 IWF。