Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, 94305.
Stanford Neuroscience Institute, Stanford University, Stanford, California, 94305.
Hum Brain Mapp. 2018 Apr;39(4):1607-1625. doi: 10.1002/hbm.23938. Epub 2018 Jan 13.
Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings.
同步单次经颅磁刺激-脑电图(spTMS-EEG)是一种新兴的非侵入性工具,可用于探测人类大脑的因果动力学。然而,除了标准脑电图数据中的常见伪影外,spTMS-EEG 数据还受到巨大的刺激诱导伪影的影响,这给神经信息的提取带来了重大挑战。通常,在进行手动、耗时且主观的伪影剔除过程之后,才会对神经信号进行分析。在此,我们描述了一种用于 spTMS-EEG 伪影剔除的全自动算法。该算法的关键步骤是将 spTMS-EEG 数据分解为统计上独立的成分(IC),然后根据神经和伪迹活动的时空分布知识,训练模式分类器来自动识别伪迹成分。自动清洁和手动清洁的数据产生定性相似的组诱发电位波形。该算法的 IC 分类准确率达到 95%,与专家进行的伪迹剔除性能相媲美,并且适用于大量的 spTMS-EEG 数据集(n=90 个刺激部位),在刺激部位/受试者/人群/导联之间保持高准确率,并优于当前的自动算法。此外,该算法优于相对缺乏经验的个体的伪迹剔除性能,因为随着该技术的广泛传播,spTMS-EEG 可能会被更多人使用。总之,我们的算法为 spTMS-EEG 数据的清洁提供了一种自动化、快速、客观和准确的方法,这可以增加 TMS-EEG 在临床和基础神经科学中的应用。