Suppr超能文献

ARTIST:一种用于单脉冲 TMS-EEG 数据的全自动伪迹拒绝算法。

ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, 94305.

Stanford Neuroscience Institute, Stanford University, Stanford, California, 94305.

出版信息

Hum Brain Mapp. 2018 Apr;39(4):1607-1625. doi: 10.1002/hbm.23938. Epub 2018 Jan 13.

Abstract

Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings.

摘要

同步单次经颅磁刺激-脑电图(spTMS-EEG)是一种新兴的非侵入性工具,可用于探测人类大脑的因果动力学。然而,除了标准脑电图数据中的常见伪影外,spTMS-EEG 数据还受到巨大的刺激诱导伪影的影响,这给神经信息的提取带来了重大挑战。通常,在进行手动、耗时且主观的伪影剔除过程之后,才会对神经信号进行分析。在此,我们描述了一种用于 spTMS-EEG 伪影剔除的全自动算法。该算法的关键步骤是将 spTMS-EEG 数据分解为统计上独立的成分(IC),然后根据神经和伪迹活动的时空分布知识,训练模式分类器来自动识别伪迹成分。自动清洁和手动清洁的数据产生定性相似的组诱发电位波形。该算法的 IC 分类准确率达到 95%,与专家进行的伪迹剔除性能相媲美,并且适用于大量的 spTMS-EEG 数据集(n=90 个刺激部位),在刺激部位/受试者/人群/导联之间保持高准确率,并优于当前的自动算法。此外,该算法优于相对缺乏经验的个体的伪迹剔除性能,因为随着该技术的广泛传播,spTMS-EEG 可能会被更多人使用。总之,我们的算法为 spTMS-EEG 数据的清洁提供了一种自动化、快速、客观和准确的方法,这可以增加 TMS-EEG 在临床和基础神经科学中的应用。

相似文献

1
ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.
Hum Brain Mapp. 2018 Apr;39(4):1607-1625. doi: 10.1002/hbm.23938. Epub 2018 Jan 13.
2
EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
J Neurosci Methods. 2015 Mar 30;243:84-93. doi: 10.1016/j.jneumeth.2015.01.030. Epub 2015 Feb 7.
3
TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.
Front Neural Circuits. 2016 Oct 7;10:78. doi: 10.3389/fncir.2016.00078. eCollection 2016.
4
Adapted Beamforming: A Robust and Flexible Approach for Removing Various Types of Artifacts from TMS-EEG Data.
Brain Topogr. 2024 Sep;37(5):659-683. doi: 10.1007/s10548-024-01044-4. Epub 2024 Apr 10.
5
A practical guide to the selection of independent components of the electroencephalogram for artifact correction.
J Neurosci Methods. 2015 Jul 30;250:47-63. doi: 10.1016/j.jneumeth.2015.02.025. Epub 2015 Mar 16.
6
Source-based artifact-rejection techniques for TMS-EEG.
J Neurosci Methods. 2022 Dec 1;382:109693. doi: 10.1016/j.jneumeth.2022.109693. Epub 2022 Aug 31.
7
Evaluation of algorithms for correction of transcranial magnetic stimulation-induced artifacts in electroencephalograms.
Med Biol Eng Comput. 2019 Dec;57(12):2599-2615. doi: 10.1007/s11517-019-02053-3. Epub 2019 Oct 26.
8
Differences in TMS-evoked responses between schizophrenia patients and healthy controls can be observed without a dedicated EEG system.
Clin Neurophysiol. 2010 Mar;121(3):332-9. doi: 10.1016/j.clinph.2009.10.035. Epub 2009 Dec 16.
9
Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation.
J Neural Eng. 2016 Dec;13(6):066016. doi: 10.1088/1741-2560/13/6/066016. Epub 2016 Oct 27.
10
Reduction of TMS induced artifacts in EEG using principal component analysis.
IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):376-82. doi: 10.1109/TNSRE.2012.2228674. Epub 2013 Jan 23.

引用本文的文献

4
Extracting reproducible subject-specific MEG evoked responses with independent component analysis.
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00182. eCollection 2024.
5
The cerebellum contributes to prediction error coding in reinforcement learning in humans.
J Neurosci. 2025 Mar 26;45(19). doi: 10.1523/JNEUROSCI.1972-24.2025.
6
Cortical plasticity differences in substance use disorders.
Fundam Res. 2023 Mar 7;4(6):1351-1356. doi: 10.1016/j.fmre.2023.02.015. eCollection 2024 Nov.
7
Influence of Large-Scale Brain State Dynamics on the Evoked Response to Brain Stimulation.
J Neurosci. 2024 Sep 25;44(39):e0782242024. doi: 10.1523/JNEUROSCI.0782-24.2024.
10
Detection of Language Lateralization Using Spectral Analysis of EEG.
J Clin Neurophysiol. 2024 May 1;41(4):334-343. doi: 10.1097/WNP.0000000000000988.

本文引用的文献

1
TMS-evoked long-lasting artefacts: A new adaptive algorithm for EEG signal correction.
Clin Neurophysiol. 2017 Sep;128(9):1563-1574. doi: 10.1016/j.clinph.2017.06.003. Epub 2017 Jun 17.
2
TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.
Front Neural Circuits. 2016 Oct 7;10:78. doi: 10.3389/fncir.2016.00078. eCollection 2016.
4
Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.
Neuroimage. 2016 Dec;143:204-213. doi: 10.1016/j.neuroimage.2016.08.060. Epub 2016 Aug 31.
5
Recovering TMS-evoked EEG responses masked by muscle artifacts.
Neuroimage. 2016 Oct 1;139:157-166. doi: 10.1016/j.neuroimage.2016.05.028. Epub 2016 Jun 9.
6
Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: Towards functional cytoarchitectonics.
Neuroimage. 2016 Jul 15;135:115-24. doi: 10.1016/j.neuroimage.2016.05.009. Epub 2016 May 3.
8
On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4101-5. doi: 10.1109/EMBC.2015.7319296.
9
Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex.
J Neurosci. 2015 Oct 28;35(43):14435-47. doi: 10.1523/JNEUROSCI.1833-15.2015.
10
The PREP pipeline: standardized preprocessing for large-scale EEG analysis.
Front Neuroinform. 2015 Jun 18;9:16. doi: 10.3389/fninf.2015.00016. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验