Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
Hum Genomics. 2018 Jan 15;12(1):1. doi: 10.1186/s40246-018-0132-z.
Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) significantly associated with chronic obstructive pulmonary disease (COPD). However, many genetic variants show suggestive evidence for association but do not meet the strict threshold for genome-wide significance. Integrative analysis of multiple omics datasets has the potential to identify novel genes involved in disease pathogenesis by leveraging these variants in a functional, regulatory context.
We performed expression quantitative trait locus (eQTL) analysis using genome-wide SNP genotyping and gene expression profiling of lung tissue samples from 86 COPD cases and 31 controls, testing for SNPs associated with gene expression levels. These results were integrated with a prior COPD GWAS using an ensemble statistical and network methods approach to identify relevant genes and observe them in the context of overall genetic control of gene expression to highlight co-regulated genes and disease pathways. We identified 250,312 unique SNPs and 4997 genes in the cis(local)-eQTL analysis (5% false discovery rate). The top gene from the integrative analysis was MAPT, a gene recently identified in an independent GWAS of lung function. The genes HNRNPAB and PCBP2 with RNA binding activity and the gene ACVR1B were identified in network communities with validated disease relevance.
The integration of lung tissue gene expression with genome-wide SNP genotyping and subsequent intersection with prior GWAS and omics studies highlighted candidate genes within COPD loci and in communities harboring known COPD genes. This integration also identified novel disease genes in sub-threshold regions that would otherwise have been missed through GWAS.
全基因组关联研究(GWAS)已经确定了与慢性阻塞性肺疾病(COPD)显著相关的单核苷酸多态性(SNP)。然而,许多遗传变异显示出与疾病相关的提示性证据,但不符合全基因组显著水平的严格阈值。通过在功能、调控背景下利用这些变异,对多个组学数据集进行综合分析,有可能识别出参与疾病发病机制的新基因。
我们对 86 例 COPD 病例和 31 例对照的肺组织样本进行了全基因组 SNP 基因分型和基因表达谱的表达数量性状基因座(eQTL)分析,检测与基因表达水平相关的 SNP。这些结果与之前的 COPD GWAS 进行了整合,采用了基于集合统计和网络方法的方法来识别相关基因,并观察它们在整体基因表达遗传控制的背景下,突出共调控基因和疾病途径。我们在顺式(局部)-eQTL 分析中鉴定了 250312 个独特的 SNP 和 4997 个基因(5%的假发现率)。整合分析的顶级基因是 MAPT,这是一个在肺功能独立 GWAS 中最近发现的基因。具有 RNA 结合活性的 HNRNPAB 和 PCBP2 基因以及具有验证疾病相关性的基因 ACVR1B 被鉴定为具有验证疾病相关性的网络社区中的基因。
肺组织基因表达与全基因组 SNP 基因分型的整合,以及随后与之前的 GWAS 和组学研究的交集,突出了 COPD 基因座内和已知 COPD 基因所在社区内的候选基因。这种整合还在 GWAS 可能遗漏的亚阈值区域中识别出了新的疾病基因。