Suppr超能文献

一种用于脑组织死后分析的激光显微切割-液相色谱-串联质谱工作流程。

A Laser Microdissection-Liquid Chromatography-Tandem Mass Spectrometry Workflow for Post-mortem Analysis of Brain Tissue.

作者信息

Hondius David C, Hoozemans Jeroen J M, Rozemuller Annemieke J M, Li Ka Wan, Smit August B

机构信息

Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands.

Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

Methods Mol Biol. 2018;1723:371-383. doi: 10.1007/978-1-4939-7558-7_21.

Abstract

Improved speed and sensitivity of mass spectrometry allow the simultaneous quantification of high numbers of proteins from increasingly smaller quantities of tissue sample. Quantitative data of the proteome is highly valuable for providing unbiased information on, for example, protein expression changes related to disease or identifying related biomarkers. In brain diseases the affected area can be small and pathogenic events can be related to a specific cell type in an otherwise heterogeneous tissue type. An emerging approach dedicated to analyzing this type of samples is laser micro-dissection (LMD) combined with LC-MS/MS into a single workflow. In this chapter, we describe different options for isolating tissue suitable for LC-MS/MS analysis.

摘要

质谱技术在速度和灵敏度方面的提升,使得从越来越少量的组织样本中同时定量分析大量蛋白质成为可能。蛋白质组的定量数据对于提供无偏倚信息非常有价值,例如与疾病相关的蛋白质表达变化或识别相关生物标志物。在脑部疾病中,受影响的区域可能很小,致病事件可能与异质性组织类型中的特定细胞类型有关。一种专门用于分析此类样本的新兴方法是将激光显微切割(LMD)与LC-MS/MS整合到单个工作流程中。在本章中,我们描述了分离适合LC-MS/MS分析的组织的不同方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验