Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
Neuron. 2018 Jan 17;97(2):275-289. doi: 10.1016/j.neuron.2017.12.020.
Head direction cells form an internal compass signaling head azimuth orientation even without visual landmarks. This property is generated by a neuronal ring attractor that is updated using rotation velocity cues. The properties and origin of this velocity drive remain, however, unknown. We propose a quantitative framework whereby this drive represents a multisensory self-motion estimate computed through an internal model that uses sensory prediction errors of vestibular, visual, and somatosensory cues to improve on-line motor drive. We show how restraint-dependent strength of recurrent connections within the attractor can explain differences in head direction cell firing between free foraging and restrained passive rotation. We also summarize recent findings on how gravity influences azimuth coding, indicating that the velocity drive is not purely egocentric. Finally, we show that the internal compass may be three-dimensional and hypothesize that the additional vertical degrees of freedom use global allocentric gravity cues.
头部方向细胞形成一个内部罗盘,即使没有视觉地标,也能发出头部方位的信号。这种特性是由神经元环吸引子产生的,它通过旋转速度线索进行更新。然而,这个速度驱动的特性和起源仍然未知。我们提出了一个定量框架,其中这个驱动代表了通过内部模型计算的多感觉自身运动估计,该模型使用前庭、视觉和躯体感觉线索的感觉预测误差来提高在线运动驱动。我们展示了吸引子内的递归连接的约束依赖性强度如何解释自由觅食和被动旋转时头部方向细胞放电之间的差异。我们还总结了最近关于重力如何影响方位编码的发现,表明速度驱动不是纯粹的以自我为中心的。最后,我们表明内部罗盘可能是三维的,并假设额外的垂直自由度使用全局以他心为中心的重力线索。