Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany.
Phys Rev E. 2017 Sep;96(3-1):033203. doi: 10.1103/PhysRevE.96.033203. Epub 2017 Sep 21.
The effect of micron-sized particles on a low-pressure capacitively coupled rf discharge is studied both experimentally and using numerical simulations. In the laboratory experiments, microparticle clouds occupying a considerable fraction of the discharge volume are supported against gravity with the help of the thermophoretic force. The spatiotemporally resolved optical emission measurements are performed with different arrangements of microparticles. The numerical simulations are carried out on the basis of a one-dimensional hybrid (fluid-kinetic) discharge model describing the interaction between plasma and microparticles in a self-consistent way. The study is focused on the role of microparticle arrangement in interpreting the spatiotemporal emission measurements. We show that it is not possible to reproduce simultaneously the observed microparticle arrangement and emission pattern in the framework of the considered one-dimensional model. This disagreement can be attributed to the two-dimensional effects (e.g., radial diffusion of the plasma components) or to the lack of the proper description of the sharp void boundary in the frame of fluid approach.
研究了微米级颗粒对低压容性耦合射频放电的影响,既进行了实验研究,也进行了数值模拟。在实验室实验中,借助热泳力,将占据相当一部分放电体积的微粒云悬浮在重力场之外。采用不同的微粒布置方式进行了时空分辨的光学发射测量。数值模拟是基于一个一维混合(流体-动力学)放电模型进行的,该模型以自洽的方式描述了等离子体和微粒之间的相互作用。研究的重点是微粒布置在解释时空发射测量中的作用。我们表明,在考虑的一维模型框架内,不可能同时再现观察到的微粒布置和发射模式。这种不一致可以归因于二维效应(例如,等离子体成分的径向扩散)或在流体方法框架内缺乏对尖锐空穴边界的适当描述。