Department of Physics, Tsinghua University, Beijing 100084, China.
School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China.
Phys Rev E. 2017 Dec;96(6-1):063118. doi: 10.1103/PhysRevE.96.063118. Epub 2017 Dec 28.
We perform a computational fluid dynamics simulation of trivalent terbium [Tb(III)] ion line emissions from single-bubble sonoluminescence (SBSL). Our simulation includes dynamic boundary conditions as well as the effects of gas properties and quenching by species, such as nitrite ion (NO_{2}^{-}). Simulation results demonstrate that when the maximum temperature inside a dimly luminescing bubble is relatively low, emission peaks from excited Tb(III) ions are prominent within the emission spectra. As the maximum temperature of the bubble increases, emission peaks of Tb(III) ions fade away relative to the continuum background emission. These calculations match observations of Tb(III) line emissions from SBSL occurring in aqueous solutions of terbium nitrate [Tb(NO_{3})_{3}] under an argon gas atmosphere. The evolution of the radiation energy spectrum over time for sonoluminescing bubbles provides a clear mechanism explaining Tb(III) emission peaks gradually merging into the continuous background emission as the radiation power increases.
我们对单泡声致发光(SBSL)中三价铽[Tb(III)]离子谱线发射进行了计算流体动力学模拟。我们的模拟包括动态边界条件以及气体性质和诸如亚硝酸盐离子(NO_{2}^{-})等物质猝灭的影响。模拟结果表明,当发光泡内的最高温度相对较低时,在发射光谱中可以观察到处于激发态的 Tb(III)离子的发射峰。随着泡内最高温度的升高,Tb(III)离子的发射峰相对于连续背景发射逐渐消失。这些计算与在氩气气氛下的硝酸铽[Tb(NO_{3})_{3}]水溶液中 SBSL 产生的 Tb(III)谱线发射的观察结果一致。随时间演变的辐射能谱为解释随着辐射功率的增加 Tb(III)发射峰逐渐合并到连续背景发射提供了一个清晰的机制。