Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
Phys Rev E. 2017 Nov;96(5-1):052133. doi: 10.1103/PhysRevE.96.052133. Epub 2017 Nov 22.
Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge) and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and (b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity (inverse length dimension), g_{scat}^{(a)}, which embodies all dynamical interactions, through various quantum scattering lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of g_{scat}^{(a)} in the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen in a recent experiment on electrolyte solutions. We also put forth an extension of the standard diffusion equation, which manifestly incorporates the effects arising from the underlying microscopic collisions among constituent molecular species. Furthermore, we show a nontrivial connection between the current-voltage characteristics of electrolyte solutions and the Landauer's approach to electrical conduction in mesoscopic solids and thereby establish a definite conceptual bridge between the two disjoint subjects. For numerical insight, we present results on the aqueous solution of KCl as an example of strong electrolyte, and the transport (conduction as well as diffusion) of K^{+} ions in water, as an example of ion transport across the voltage-gated channels in biological cells.
嵌入在复杂分子环境中的相互作用电荷载流子的集合的紧急统计属性,因此状态方程,经常表现出各种异常现象,特别是在高密度(等效地,浓度)范围内,这些异常现象尚不清楚,因为它们不属于德拜-休克尔-昂萨格和泊松-诺尔斯特-普朗克的低浓度现象学,包括它们的变体。为了更进一步,我们在这里使用量子散射理论、玻尔兹曼的斯特恩扎尔茨假设的输运理论和经典电磁学(洛伦兹规范)的物理概念和数学工具,并获得了平均和频率-波矢相关的纵向和横向电流密度、扩散系数和电荷密度的解析表达式,因此获得了(a)强电解质的化学势、活度系数和等效电导率和(b)复杂分子环境中离子输运过程的电流-电压特性的解析表达式。我们使用类似于德拜长度的概念,然后是电双层的方法,在这里确定了一对特征长度尺度(纵向和横向),它们作为波矢和频率的函数,明显地在时空上表现出非平凡的波动。作为一个统一的主题,我们提出了一个数量(倒数长度维度)g_{scat}^{(a)},它通过与分子种类 a 相关的各种量子散射长度,体现了所有的动态相互作用,并且这种分析行为帮助我们在所有浓度范围内合理地解释强电解质的性质,包括异常现象。作为一个例子,g_{scat}^{(a)}在高浓度范围内的行为解释了最近电解质溶液实验中看到的德拜长度随浓度的反常增加。我们还提出了标准扩散方程的扩展,它明显地包含了来自组成分子种类之间的潜在微观碰撞的影响。此外,我们展示了电解质溶液的电流-电压特性与朗道尔在介观固体中电传导方法之间的非平凡联系,从而在这两个不相关的主题之间建立了一个明确的概念桥梁。为了获得数值洞察力,我们以 KCl 的水溶液为例展示了强电解质的结果,以及 K^{+}离子在水中的传输(传导和扩散),作为生物细胞中电压门控通道的离子传输的一个例子。