Suppr超能文献

预测溃疡性结肠炎患者使用维得利珠单抗后达到无皮质类固醇内镜缓解的情况。

Predicting corticosteroid-free endoscopic remission with vedolizumab in ulcerative colitis.

机构信息

VA Center for Clinical Management Research, VA Ann Arbor Health Care System, Ann Arbor, MI, USA.

Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA.

出版信息

Aliment Pharmacol Ther. 2018 Mar;47(6):763-772. doi: 10.1111/apt.14510. Epub 2018 Jan 22.

Abstract

BACKGROUND

Vedolizumab is an effective therapy for ulcerative colitis (UC), but costly and slow to work. New clinical responses occur after 30 weeks of therapy.

AIMS

To enable physicians, patients, and insurers to predict whether a patient with UC will respond to vedolizumab at an early time point after starting therapy.

METHODS

The clinical study data request website provided the phase 3 clinical trial data for vedolizumab. Random forest models were trained on 70% and tested on 30% of the data to predict corticosteroid-free endoscopic remission at week 52. Models were constructed using baseline data, or data through week 6 of vedolizumab therapy from 491 subjects.

RESULTS

The AuROC for prediction of corticosteroid-free endoscopic remission at week 52 using baseline data was only 0.62 (95% CI: 0.53-0.72), but was 0.73 (95% CI: 0.65-0.82) when using data through week 6. A total of 47% of subjects were predicted to be remitters, and 59% of these subjects achieved corticosteroid-free endoscopic remission, in contrast to 21% of the predicted non-remitters. A week 6 prediction using FCP ≤234 μg/g was nearly as accurate.

CONCLUSIONS

A machine learning algorithm using laboratory data through week 6 of vedolizumab therapy was able to accurately identify which UC patients would achieve corticosteroid-free endoscopic remission on vedolizumab at week 52. Application of this algorithm could have significant implications for clinical decisions on whom to continue on this costly medication when the benefits of the vedolizumab are not clinically apparent in the first 6 weeks of therapy.

摘要

背景

维得利珠单抗是治疗溃疡性结肠炎(UC)的有效药物,但价格昂贵且起效缓慢。新的临床反应发生在治疗 30 周后。

目的

使医生、患者和保险公司能够预测 UC 患者在开始治疗后早期对维得利珠单抗是否有反应。

方法

临床研究数据请求网站提供了维得利珠单抗的 III 期临床试验数据。随机森林模型在 70%的数据上进行训练,并在 30%的数据上进行测试,以预测 52 周时无皮质类固醇的内镜缓解。模型使用基线数据或 491 名受试者接受维得利珠单抗治疗 6 周的数据构建。

结果

使用基线数据预测 52 周时无皮质类固醇的内镜缓解的 AuROC 仅为 0.62(95%CI:0.53-0.72),但使用 6 周时的数据时为 0.73(95%CI:0.65-0.82)。47%的受试者被预测为缓解者,其中 59%的缓解者达到了无皮质类固醇的内镜缓解,而预测的非缓解者为 21%。使用 FCP≤234μg/g 的 6 周预测也几乎同样准确。

结论

使用维得利珠单抗治疗 6 周时的实验室数据的机器学习算法能够准确识别出哪些 UC 患者在 52 周时将达到无皮质类固醇的内镜缓解。当维得利珠单抗在治疗的前 6 周内临床效果不明显时,应用该算法对继续使用这种昂贵药物的患者进行选择可能具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d3f/5814341/f350195990c2/nihms931201f1a.jpg

相似文献

引用本文的文献

2
Artificial intelligence in inflammatory bowel disease.炎症性肠病中的人工智能
Saudi J Gastroenterol. 2025 Jul 1;31(4):197-205. doi: 10.4103/sjg.sjg_46_25. Epub 2025 Apr 25.
5
Artificial intelligence and machine learning technologies in ulcerative colitis.溃疡性结肠炎中的人工智能和机器学习技术
Therap Adv Gastroenterol. 2024 Sep 5;17:17562848241272001. doi: 10.1177/17562848241272001. eCollection 2024.
6
Artificial Intelligence and the Future of Gastroenterology and Hepatology.人工智能与胃肠病学和肝病学的未来
Gastro Hep Adv. 2022 May 11;1(4):581-595. doi: 10.1016/j.gastha.2022.02.025. eCollection 2022.

本文引用的文献

3
JAK inhibition in inflammatory bowel disease.炎症性肠病中的JAK抑制作用。
Expert Rev Clin Immunol. 2017 Jul;13(7):693-703. doi: 10.1080/1744666X.2017.1291342. Epub 2017 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验