Blaskovich Mark A T, Hansford Karl A, Butler Mark S, Jia ZhiGuang, Mark Alan E, Cooper Matthew A
Institute for Molecular Bioscience , The University of Queensland , 306 Carmody Road , Brisbane , Queensland 4072 , Australia.
School of Chemistry and Molecular Biosciences , The University of Queensland , Chemistry Building 68, Cooper Road , Brisbane , Queensland 4072 , Australia.
ACS Infect Dis. 2018 May 11;4(5):715-735. doi: 10.1021/acsinfecdis.7b00258. Epub 2018 Feb 19.
Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and β-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.
糖肽类抗生素(GPAs)是对抗耐药菌的关键武器,自万古霉素首次被引入50多年来,它仍然是治疗严重革兰氏阳性感染的主流疗法。新的、更有效的半合成衍生物已进入临床,如达巴万星和奥利万星,它们具有优异的药代动力学和靶点结合特性,能够成功治疗耐万古霉素感染。面对耐药性的发展,多重耐药(MDR)肺炎链球菌和耐甲氧西林金黄色葡萄球菌(MRSA)共同导致的感染比所有多重耐药革兰氏阴性菌感染的总和多20倍,因此需要进一步改进,以确保为后代充分维持革兰氏阳性菌的武器库。在过去十年中,通过全合成、天然产物的半合成修饰或生物工程产生了一系列修饰的糖肽。其中一些已经进行了广泛的表征,显示出体内疗效、良好的药代动力学/药效学特性,并且没有报道的临床前毒性;一些可能适合正式的临床前开发。天然产物单环β-内酰胺类、头孢菌素类和β-内酰胺类抗生素都催生了多代商业和临床成功的半合成衍生物。同样,如果有足够的资金和市场支持回归抗生素开发,下一代糖肽现在在技术上已做好进入临床的准备。