Suppr超能文献

生物纳米孔:电化学单分子分析的受限空间。

Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

机构信息

Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P. R. China.

出版信息

Acc Chem Res. 2018 Feb 20;51(2):331-341. doi: 10.1021/acs.accounts.7b00143. Epub 2018 Jan 24.

Abstract

Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis, we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.

摘要

纳米孔传感技术正在发展成为一种强大的单分子方法,用于研究通过研究整体系统无法获得的生物分子的特征。当目标分子通过纳米孔传输时,占据孔的离子被排除,从而导致来自间歇性离子阻塞事件的电信号。通过对阻塞事件的幅度、持续时间、频率和形状的统计分析,可以实时获得目标分子在单分子水平上的许多特性,包括其大小、构象、结构、电荷、几何形状以及与其他分子的相互作用。随着α-溶血素在表征单个多核苷酸方面的应用发展,纳米孔技术在生物学、物理学、化学和纳米科学领域引起了广泛的研究兴趣。作为一种强大的单分子分析方法,纳米孔技术已应用于各种生物分子的检测,包括寡核苷酸、肽、寡糖、有机分子和与疾病相关的蛋白质。在本专题介绍中,我们重点介绍了基于 DNA 的生物纳米孔在 DNA 构象结构研究和生物纳米孔检测中的最新进展。此外,我们介绍了生物纳米孔在研究受电荷、长度和偶极矩影响的肽的构象以及研究受抑制剂、促进剂或外加电压影响的疾病相关蛋白结构和聚集转变中的应用。为了提高生物纳米孔的传感能力,并进一步将其应用于更广泛的分子传感领域,我们专注于探索新型生物纳米孔,如 Aerolysin 和 Stable Protein 1。Aerolysin 对单链寡核苷酸的检测具有特别高的灵敏度,无论是在电流分离还是持续时间方面。最后,为了便于纳米孔测量和统计分析的使用,我们开发了一种集成的电流测量系统和一种用于纳米孔传感的精确数据处理方法。生物纳米孔的独特几何结构为单分子传感提供了作为纳米传感器的明显优势。孔入口的结构负责捕获目标分子,而腔区域决定了单分子的易位过程。由于目标分子的捕获主要是扩散限制的,因此有望通过具有理想基团的关键氨基酸的定向突变有效地增强纳米孔对目标分析物的捕获能力。此外,改变生物纳米孔壁内的侧链可以优化孔的几何形状,并实现单分子界面与分析物之间的最佳相互作用。这些改进将允许纳米孔传感器具有高空间和电流分辨率,从而确保对单生物分子的动态研究成为可能,包括它们的亚稳态构象、电荷分布和相互作用。在未来,强大算法的数据分析将有可能在分析物通过孔时自动和统计地提取详细信息。我们得出的结论是,这些改进在不久的将来可能会为纳米孔传感在各个领域的应用带来巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验