Suppr超能文献

使用压缩感知方法进行腹部 PET 和动态对比增强 MRI 的呼吸运动同步校正。

Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.

Department of Information Engineering, University of Pisa, Pisa, Italy; and.

出版信息

J Nucl Med. 2018 Sep;59(9):1474-1479. doi: 10.2967/jnumed.117.203943. Epub 2018 Jan 25.

Abstract

We present an approach for concurrent reconstruction of respiratory motion-compensated abdominal dynamic contrast-enhanced (DCE)-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields derived from radial MR data; the approach is robust to changes in respiratory pattern and does not increase the total acquisition time. PET and DCE-MRI data of 12 oncologic patients were simultaneously acquired for 6 min on an integrated PET/MR system after administration of F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases on the basis of a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. Motion vector fields obtained using the full 6-min (MC) and only the last 1 min (MC) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MR images (moco_GRASP). The motion-correction methods (MC and MC) were evaluated by qualitative analysis of the MR images and quantitative analysis of SUV and SUV, contrast, signal-to-noise ratio (SNR), and lesion volume in the PET images. Motion-corrected MC PET images demonstrated 30%, 23%, 34%, and 18% increases in average SUV, SUV, contrast, and SNR and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC protocol: 19%, 10%, 15%, and 9% increases in average SUV, SUV, contrast, and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath-hold Cartesian volumetric interpolated breath-hold examination acquisitions. We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared with routine PET/DCE-MRI protocols.

摘要

我们提出了一种在集成 PET/MR 扫描仪中同时重建呼吸运动补偿的腹部动态对比增强(DCE)-MRI 和 PET 数据的方法。MR 和 PET 重建共享来自径向 MR 数据的相同运动矢量场;该方法对呼吸模式的变化具有鲁棒性,并且不会增加总采集时间。在集成的 PET/MR 系统上,在给予 F-FDG 和钆特酸葡甲胺后,对 12 例肿瘤患者同时采集 6 分钟的 PET 和 DCE-MRI 数据。连续采集同时进行的金角径向 MR 数据与 PET 数据,并根据直接从径向 MR 数据中获得的呼吸信号将其分为多个运动阶段。使用压缩感知方法对多维数据集进行重建,该方法利用呼吸相位之间的稀疏性。使用完整的 6 分钟(MC)和仅最后 1 分钟(MC)的数据获得的运动矢量场被合并到 PET 重建中,以获得运动校正的 PET 图像,并在 MR 迭代重建算法中产生一系列运动校正的 DCE-MR 图像(moco_GRASP)。通过对 MR 图像的定性分析和对 PET 图像中 SUV 和 SUV、对比度、信噪比(SNR)和病变体积的定量分析来评估运动校正方法(MC 和 MC)。与非运动校正的 PET 图像相比,运动校正的 MC PET 图像的平均 SUV、SUV、对比度和 SNR 分别增加了 30%、23%、34%和 18%,病变体积平均减少了 40%。MC 方案的这些性能指标的变化虽然较小,但仍然很大:平均 SUV、SUV、对比度和 SNR 分别增加了 19%、10%、15%和 9%,病变体积减少了 28%。与常规的屏气笛卡尔容积内插屏气检查采集相比,moco_GRASP 图像被认为具有可接受或更好的诊断图像质量。我们提出了一种方法,允许在集成的 PET/MR 扫描仪中同时采集具有呼吸运动校正的诊断质量 DCE-MRI 和定量准确的 PET 数据,与常规的 PET/DCE-MRI 方案相比,采集时间几乎没有延长。

相似文献

1
Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach.
J Nucl Med. 2018 Sep;59(9):1474-1479. doi: 10.2967/jnumed.117.203943. Epub 2018 Jan 25.
3
Reconstruction-Incorporated Respiratory Motion Correction in Clinical Simultaneous PET/MR Imaging for Oncology Applications.
J Nucl Med. 2015 Jun;56(6):884-9. doi: 10.2967/jnumed.114.153007. Epub 2015 Apr 23.
4
Improving dynamic contrast-enhanced MRI of the lung using motion-weighted sparse reconstruction: Initial experiences in patients.
Magn Reson Imaging. 2020 May;68:36-44. doi: 10.1016/j.mri.2020.01.013. Epub 2020 Jan 27.
5
MR-based respiratory and cardiac motion correction for PET imaging.
Med Image Anal. 2017 Dec;42:129-144. doi: 10.1016/j.media.2017.08.002. Epub 2017 Aug 3.
6
Practical PET Respiratory Motion Correction in Clinical PET/MR.
J Nucl Med. 2015 Jun;56(6):890-6. doi: 10.2967/jnumed.114.151779. Epub 2015 May 7.
7
Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging.
J Magn Reson Imaging. 2018 Aug;48(2):459-468. doi: 10.1002/jmri.25977. Epub 2018 Feb 13.
8
Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system.
J Nucl Med. 2013 Mar;54(3):464-71. doi: 10.2967/jnumed.112.105296. Epub 2013 Jan 3.
9
Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo).
Eur J Nucl Med Mol Imaging. 2018 Nov;45(12):2147-2154. doi: 10.1007/s00259-018-4084-2. Epub 2018 Jul 11.
10
Respiratory motion compensation using data binning in dynamic contrast enhanced golden-angle radial MRI.
Magn Reson Imaging. 2020 Jul;70:115-125. doi: 10.1016/j.mri.2020.03.011. Epub 2020 Apr 28.

引用本文的文献

1
Advances in Molecular Imaging for Neuroendocrine Neoplasms.
Cancers (Basel). 2025 Jun 17;17(12):2013. doi: 10.3390/cancers17122013.
2
Advancements in Neuroendocrine Neoplasms: Imaging and Future Frontiers.
J Clin Med. 2024 Jun 2;13(11):3281. doi: 10.3390/jcm13113281.
3
Comparison of F-FDG PET/MR and PET/CT for pretreatment TNM staging of hilar cholangiocarcinoma.
Abdom Radiol (NY). 2023 Aug;48(8):2537-2546. doi: 10.1007/s00261-023-03925-x. Epub 2023 May 13.
4
PET/MRI imaging in neuroendocrine neoplasm.
Abdom Radiol (NY). 2023 Dec;48(12):3585-3600. doi: 10.1007/s00261-022-03757-1. Epub 2022 Dec 16.
5
MR-assisted PET respiratory motion correction using deep-learning based short-scan motion fields.
Magn Reson Med. 2022 Aug;88(2):676-690. doi: 10.1002/mrm.29233. Epub 2022 Mar 28.
6
Low-Dose PET Imaging of Tumors in Lung and Liver Regions Using Internal Motion Estimation.
Diagnostics (Basel). 2021 Nov 18;11(11):2138. doi: 10.3390/diagnostics11112138.
7
Quantitative imaging of uterine cancers with diffusion-weighted MRI and 18-fluorodeoxyglucose PET/CT.
Abdom Radiol (NY). 2022 Sep;47(9):3174-3188. doi: 10.1007/s00261-021-03218-1. Epub 2021 Jul 23.
8
Additional Value of Integrated F-FDG PET/MRI for Evaluating Biliary Tract Cancer: Comparison with Contrast-Enhanced CT.
Korean J Radiol. 2021 May;22(5):714-724. doi: 10.3348/kjr.2020.0689. Epub 2021 Feb 9.
9
Attenuation correction for human PET/MRI studies.
Phys Med Biol. 2020 Dec 2;65(23):23TR02. doi: 10.1088/1361-6560/abb0f8.
10
Impact of respiratory motion correction on lesion visibility and quantification in thoracic PET/MR imaging.
PLoS One. 2020 Jun 4;15(6):e0233209. doi: 10.1371/journal.pone.0233209. eCollection 2020.

本文引用的文献

1
An overview of PET/MR, focused on clinical applications.
Abdom Radiol (NY). 2017 Feb;42(2):631-644. doi: 10.1007/s00261-016-0894-5.
2
4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling.
Magn Reson Med. 2017 Mar;77(3):1170-1183. doi: 10.1002/mrm.26206. Epub 2016 Mar 16.
3
Practical PET Respiratory Motion Correction in Clinical PET/MR.
J Nucl Med. 2015 Jun;56(6):890-6. doi: 10.2967/jnumed.114.151779. Epub 2015 May 7.
4
Motion correction options in PET/MRI.
Semin Nucl Med. 2015 May;45(3):212-23. doi: 10.1053/j.semnuclmed.2015.01.001.
5
XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.
Magn Reson Med. 2016 Feb;75(2):775-88. doi: 10.1002/mrm.25665. Epub 2015 Mar 25.
6
Motion correction strategies for integrated PET/MR.
J Nucl Med. 2015 Feb;56(2):261-9. doi: 10.2967/jnumed.114.146787. Epub 2015 Jan 8.
7
Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI.
Med Image Anal. 2015 Jan;19(1):110-20. doi: 10.1016/j.media.2014.08.003. Epub 2014 Sep 30.
8
4D image reconstruction for emission tomography.
Phys Med Biol. 2014 Nov 21;59(22):R371-418. doi: 10.1088/0031-9155/59/22/R371. Epub 2014 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验