Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.
Department of Information Engineering, University of Pisa, Pisa, Italy; and.
J Nucl Med. 2018 Sep;59(9):1474-1479. doi: 10.2967/jnumed.117.203943. Epub 2018 Jan 25.
We present an approach for concurrent reconstruction of respiratory motion-compensated abdominal dynamic contrast-enhanced (DCE)-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields derived from radial MR data; the approach is robust to changes in respiratory pattern and does not increase the total acquisition time. PET and DCE-MRI data of 12 oncologic patients were simultaneously acquired for 6 min on an integrated PET/MR system after administration of F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases on the basis of a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. Motion vector fields obtained using the full 6-min (MC) and only the last 1 min (MC) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MR images (moco_GRASP). The motion-correction methods (MC and MC) were evaluated by qualitative analysis of the MR images and quantitative analysis of SUV and SUV, contrast, signal-to-noise ratio (SNR), and lesion volume in the PET images. Motion-corrected MC PET images demonstrated 30%, 23%, 34%, and 18% increases in average SUV, SUV, contrast, and SNR and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC protocol: 19%, 10%, 15%, and 9% increases in average SUV, SUV, contrast, and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath-hold Cartesian volumetric interpolated breath-hold examination acquisitions. We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared with routine PET/DCE-MRI protocols.
我们提出了一种在集成 PET/MR 扫描仪中同时重建呼吸运动补偿的腹部动态对比增强(DCE)-MRI 和 PET 数据的方法。MR 和 PET 重建共享来自径向 MR 数据的相同运动矢量场;该方法对呼吸模式的变化具有鲁棒性,并且不会增加总采集时间。在集成的 PET/MR 系统上,在给予 F-FDG 和钆特酸葡甲胺后,对 12 例肿瘤患者同时采集 6 分钟的 PET 和 DCE-MRI 数据。连续采集同时进行的金角径向 MR 数据与 PET 数据,并根据直接从径向 MR 数据中获得的呼吸信号将其分为多个运动阶段。使用压缩感知方法对多维数据集进行重建,该方法利用呼吸相位之间的稀疏性。使用完整的 6 分钟(MC)和仅最后 1 分钟(MC)的数据获得的运动矢量场被合并到 PET 重建中,以获得运动校正的 PET 图像,并在 MR 迭代重建算法中产生一系列运动校正的 DCE-MR 图像(moco_GRASP)。通过对 MR 图像的定性分析和对 PET 图像中 SUV 和 SUV、对比度、信噪比(SNR)和病变体积的定量分析来评估运动校正方法(MC 和 MC)。与非运动校正的 PET 图像相比,运动校正的 MC PET 图像的平均 SUV、SUV、对比度和 SNR 分别增加了 30%、23%、34%和 18%,病变体积平均减少了 40%。MC 方案的这些性能指标的变化虽然较小,但仍然很大:平均 SUV、SUV、对比度和 SNR 分别增加了 19%、10%、15%和 9%,病变体积减少了 28%。与常规的屏气笛卡尔容积内插屏气检查采集相比,moco_GRASP 图像被认为具有可接受或更好的诊断图像质量。我们提出了一种方法,允许在集成的 PET/MR 扫描仪中同时采集具有呼吸运动校正的诊断质量 DCE-MRI 和定量准确的 PET 数据,与常规的 PET/DCE-MRI 方案相比,采集时间几乎没有延长。