Målqvist Axel, Persson Anna
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden.
Numer Math (Heidelb). 2018;138(1):191-217. doi: 10.1007/s00211-017-0905-7. Epub 2017 Jul 20.
We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the [Formula: see text]-norm. We present numerical examples, which confirm our theoretical findings.
我们使用在Målqvist和Peterseim(《数学计算》83(290):2583 - 2603, 2014)中引入的局部正交分解技术,来推导用于具有空间多尺度系数的线性和半线性抛物方程的广义有限元方法。我们考虑非光滑初始数据以及用于时间离散化的向后欧拉格式。在[公式:见正文]范数下证明了最优阶收敛速率,该速率仅取决于对比度,而不取决于系数的变化。我们给出了数值例子,证实了我们的理论结果。