Suppr超能文献

机器学习方法在生物医学研究中的兴衰。

The rise and fall of machine learning methods in biomedical research.

作者信息

Koohy Hashem

机构信息

MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford, Oxford, UK.

Honorary Research Fellow in Computational Biology, Zeeman Institute, University of Warwick, Coventry, UK.

出版信息

F1000Res. 2017 Nov 10;6:2012. doi: 10.12688/f1000research.13016.2. eCollection 2017.

Abstract

In the era of explosion in biological data, machine learning techniques are becoming more popular in life sciences, including biology and medicine. This research note examines the rise and fall of the most commonly used machine learning techniques in life sciences over the past three decades.

摘要

在生物数据爆炸的时代,机器学习技术在包括生物学和医学在内的生命科学领域正变得越来越流行。本研究报告探讨了过去三十年中生命科学领域最常用的机器学习技术的兴衰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9412/5760974/3ca61fae2b86/f1000research-6-14767-g0000.jpg

相似文献

1
The rise and fall of machine learning methods in biomedical research.
F1000Res. 2017 Nov 10;6:2012. doi: 10.12688/f1000research.13016.2. eCollection 2017.
2
[Applications of machine learning in clinical decision support in the omic era].
Yi Chuan. 2018 Sep 20;40(9):693-703. doi: 10.16288/j.yczz.18-139.
3
Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach.
PLoS One. 2018 Apr 13;13(4):e0195478. doi: 10.1371/journal.pone.0195478. eCollection 2018.
5
Machine Learning Methods in Computational Toxicology.
Methods Mol Biol. 2018;1800:119-139. doi: 10.1007/978-1-4939-7899-1_5.
6
Next-Generation Machine Learning for Biological Networks.
Cell. 2018 Jun 14;173(7):1581-1592. doi: 10.1016/j.cell.2018.05.015. Epub 2018 Jun 7.
7
Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.
J Med Syst. 2018 Apr 10;42(5):92. doi: 10.1007/s10916-018-0940-7.

引用本文的文献

1
Decoding Drug Discovery: Exploring A-to-Z In Silico Methods for Beginners.
Appl Biochem Biotechnol. 2025 Mar;197(3):1453-1503. doi: 10.1007/s12010-024-05110-2. Epub 2024 Dec 4.
2
Early Detection of Atrial Fibrillation in Chronic Obstructive Pulmonary Disease Patients.
Medicina (Kaunas). 2024 Feb 20;60(3):352. doi: 10.3390/medicina60030352.
3
A primer on the use of machine learning to distil knowledge from data in biological psychiatry.
Mol Psychiatry. 2024 Feb;29(2):387-401. doi: 10.1038/s41380-023-02334-2. Epub 2024 Jan 4.
4
Transcriptional profiles reveal histologic origin and prognosis across 33 The Cancer Genome Atlas tumor types.
Transl Cancer Res. 2023 Oct 31;12(10):2764-2780. doi: 10.21037/tcr-23-234. Epub 2023 Sep 20.
5
The ability to classify patients based on gene-expression data varies by algorithm and performance metric.
PLoS Comput Biol. 2022 Mar 11;18(3):e1009926. doi: 10.1371/journal.pcbi.1009926. eCollection 2022 Mar.
6
Prediction of Atrial Fibrillation Using Machine Learning: A Review.
Front Physiol. 2021 Oct 28;12:752317. doi: 10.3389/fphys.2021.752317. eCollection 2021.
7
Machine learning in medicine: what clinicians should know.
Singapore Med J. 2023 Feb;64(2):91-97. doi: 10.11622/smedj.2021054. Epub 2021 May 19.
10
A Structure-Based Drug Discovery Paradigm.
Int J Mol Sci. 2019 Jun 6;20(11):2783. doi: 10.3390/ijms20112783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验