Suppr超能文献

采用提升树模型对原料药的理化性质与片剂抗张强度之间的定量关系进行建模。

Modeling of quantitative relationships between physicochemical properties of active pharmaceutical ingredients and tensile strength of tablets using a boosted tree.

机构信息

a Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research , University of Toyama , Toyama-shi , Japan.

b Formulation Development Department, Development and Planning Division , Nichi-Iko Pharmaceutical Co., Ltd. , Namerikawa-shi , Japan.

出版信息

Drug Dev Ind Pharm. 2018 Jul;44(7):1090-1098. doi: 10.1080/03639045.2018.1434195. Epub 2018 Feb 8.

Abstract

OBJECTIVES

The aim of this study was to explore the potential of boosted tree (BT) to develop a correlation model between active pharmaceutical ingredient (API) characteristics and a tensile strength (TS) of tablets as critical quality attributes.

METHODS

First, we evaluated 81 kinds of API characteristics, such as particle size distribution, bulk density, tapped density, Hausner ratio, moisture content, elastic recovery, molecular weight, and partition coefficient. Next, we prepared tablets containing 50% API, 49% microcrystalline cellulose, and 1% magnesium stearate using direct compression at 6, 8, and 10 kN, and measured TS. Then, we applied BT to our dataset to develop a correlation model. Finally, the constructed BT model was validated using k-fold cross-validation.

RESULTS

Results showed that the BT model achieved high-performance statistics, whereas multiple regression analysis resulted in poor estimations. Sensitivity analysis of the BT model revealed that diameter of powder particles at the 10th percentile of the cumulative percentage size distribution was the most crucial factor for TS. In addition, the influences of moisture content, partition coefficients, and modal diameter were appreciably meaningful factors.

CONCLUSIONS

This study demonstrates that BT model could provide comprehensive understanding of the latent structure underlying APIs and TS of tablets.

摘要

目的

本研究旨在探讨提升树(BT)在建立药物活性成分(API)特性与片剂拉伸强度(TS)之间相关性模型方面的潜力,后者是关键质量属性。

方法

首先,我们评估了 81 种 API 特性,如粒度分布、堆密度、振实密度、Hausner 比、水分含量、弹性回复、分子量和分配系数。然后,我们使用直接压片法,在 6、8 和 10 kN 压力下制备含 50% API、49%微晶纤维素和 1%硬脂酸镁的片剂,并测量 TS。然后,我们将 BT 应用于我们的数据集以开发相关性模型。最后,使用 k 折交叉验证对构建的 BT 模型进行验证。

结果

结果表明,BT 模型具有高性能的统计数据,而多元回归分析的估计效果较差。BT 模型的敏感性分析表明,累积百分比粒度分布第 10 个百分位数处的粉末粒径是 TS 的最关键因素。此外,水分含量、分配系数和模态直径的影响也是显著有意义的因素。

结论

本研究表明,BT 模型可以提供对 API 和片剂 TS 潜在结构的全面理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验