Suppr超能文献

追溯具有网状基因史的光养微生物谱系。

Dating phototrophic microbial lineages with reticulate gene histories.

机构信息

Flatiron Institute Center for Computational Biology, Simons Foundation, New York, NY, USA.

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Geobiology. 2018 Mar;16(2):179-189. doi: 10.1111/gbi.12273. Epub 2018 Jan 31.

Abstract

Phototrophic bacteria are among the most biogeochemically significant organisms on Earth and are physiologically related through the use of reaction centers to collect photons for energy metabolism. However, the major phototrophic lineages are not closely related to one another in bacterial phylogeny, and the origins of their respective photosynthetic machinery remain obscured by time and low sequence similarity. To better understand the co-evolution of Cyanobacteria and other ancient anoxygenic phototrophic lineages with respect to geologic time, we designed and implemented a variety of molecular clocks that use horizontal gene transfer (HGT) as additional, relative constraints. These HGT constraints improve the precision of phototroph divergence date estimates and indicate that stem green non-sulfur bacteria are likely the oldest phototrophic lineage. Concurrently, crown Cyanobacteria age estimates ranged from 2.2 Ga to 2.7 Ga, with stem Cyanobacteria diverging 2.8 Ga. These estimates provide a several hundred Ma window for oxygenic photosynthesis to evolve prior to the Great Oxidation Event (GOE) ~2.3 Ga. In all models, crown green sulfur bacteria diversify after the loss of the banded iron formations from the sedimentary record (1.8 Ga) and may indicate the expansion of the lineage into a new ecological niche following the GOE. Our date estimates also provide a timeline to investigate the temporal feasibility of different photosystem HGT events between phototrophic lineages. Using this approach, we infer that stem Cyanobacteria are unlikely to be the recipient of an HGT of photosystem I proteins from green sulfur bacteria but could still have been either the HGT donor or the recipient of photosystem II proteins with green non-sulfur bacteria, prior to the GOE. Together, these results indicate that HGT-constrained molecular clocks are useful tools for the evaluation of various geological and evolutionary hypotheses, using the evolutionary histories of both genes and organismal lineages.

摘要

光能自养细菌是地球上最重要的生物地球化学类群之一,它们通过使用反应中心收集光子来进行能量代谢,在生理上具有相关性。然而,主要的光能自养类群在细菌系统发育中彼此之间没有密切的亲缘关系,而且它们各自光合作用机制的起源仍然被时间和低序列相似性所掩盖。为了更好地了解蓝细菌和其他古老的非放氧光合类群与地质时间的共同进化,我们设计并实施了多种分子钟,将水平基因转移(HGT)作为额外的相对约束条件。这些 HGT 约束条件提高了光合物分歧日期估计的精度,并表明原始绿非硫细菌可能是最古老的光合物种。同时,冠蓝细菌的年龄估计值在 22 亿至 27 亿年前,而原始蓝细菌的分支时间约为 28 亿年前。这些估计值为产氧光合作用在 23 亿年前的大氧化事件(GOE)之前进化提供了几百 Ma 的时间窗口。在所有模型中,冠绿硫细菌的分化时间都晚于沉积记录中条带状铁建造的消失(约 18 亿年前),这可能表明该谱系在 GOE 之后扩展到了一个新的生态位。我们的日期估计还为研究不同光合物种之间不同光合系统 HGT 事件的时间可行性提供了一个时间表。通过这种方法,我们推断原始蓝细菌不太可能从绿硫细菌中获得光系统 I 蛋白的 HGT,但在 GOE 之前,原始蓝细菌仍有可能是绿非硫细菌光系统 II 蛋白的 HGT 供体或受体。综上所述,这些结果表明,使用基因和生物谱系的进化历史,受 HGT 约束的分子钟是评估各种地质和进化假说的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ef/5873394/52144a8b5ba0/GBI-16-179-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验