Delaye Jean-Baptiste, Patin Franck, Lagrue Emmanuelle, Le Tilly Olivier, Bruno Clement, Vuillaume Marie-Laure, Raynaud Martine, Benz-De Bretagne Isabelle, Laumonnier Frederic, Vourc'h Patrick, Andres Christian, Blasco Helene
1 CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France.
2 UMR 1253, Université de Tours, Tours, France.
Ann Clin Biochem. 2018 Sep;55(5):543-552. doi: 10.1177/0004563218760351. Epub 2018 Feb 22.
Objectives Autism spectrum disorders and intellectual disability present a challenge for therapeutic and dietary management. We performed a re-analysis of plasma amino acid chromatography of children with autism spectrum disorders ( n = 22) or intellectual disability ( n = 29) to search for a metabolic signature that can distinguish individuals with these disorders from controls ( n = 30). Methods We performed univariate and multivariate analyses using different machine learning strategies, from the raw data of the amino acid chromatography. Finally, we analysed the metabolic pathways associated with discriminant biomarkers. Results Multivariate analysis revealed models to discriminate patients with autism spectrum disorders or intellectual disability and controls from plasma amino acid profiles ( P < 0.0003). Univariate analysis showed that autism spectrum disorder and intellectual disability patients shared similar differences relative to controls, including lower glutamate ( P < 0.0001 and P = 0.0002, respectively) and serine ( P = 0.002 for both) concentrations. The multivariate model ( P < 6.12.10) to discriminate between autism spectrum disorders and intellectual disability revealed the involvement of urea, 3-methyl-histidine and histidine metabolism. Biosigner analysis and univariate analysis confirmed the role of 3-methylhistidine ( P = 0.004), histidine ( P = 0.003), urea ( P = 0.0006) and lysine ( P = 0.002). Conclusions We revealed discriminant metabolic patterns between autism spectrum disorders, intellectual disability and controls. Amino acids known to play a role in neurotransmission were discriminant in the models comparing autism spectrum disorders or intellectual disability to controls, and histidine and b-alanine metabolism was specifically highlighted in the model.
目的 自闭症谱系障碍和智力残疾给治疗和饮食管理带来了挑战。我们对自闭症谱系障碍儿童(n = 22)或智力残疾儿童(n = 29)的血浆氨基酸色谱进行了重新分析,以寻找一种代谢特征,能够将患有这些疾病的个体与对照组(n = 30)区分开来。方法 我们使用不同的机器学习策略,从氨基酸色谱的原始数据进行单变量和多变量分析。最后,我们分析了与判别生物标志物相关的代谢途径。结果 多变量分析显示,根据血浆氨基酸谱可区分出自闭症谱系障碍或智力残疾患者与对照组(P < 0.0003)。单变量分析表明,自闭症谱系障碍和智力残疾患者相对于对照组存在相似的差异,包括谷氨酸浓度较低(分别为P < 0.0001和P = 0.0002)以及丝氨酸浓度较低(两者均为P = 0.002)。区分自闭症谱系障碍和智力残疾的多变量模型(P < 6.12×10)显示尿素、3 - 甲基组氨酸和组氨酸代谢参与其中。生物标志物分析和单变量分析证实了3 - 甲基组氨酸(P = 0.004)、组氨酸(P = 0.003)、尿素(P = 0.0006)和赖氨酸(P = 0.002)的作用。结论 我们揭示了自闭症谱系障碍、智力残疾和对照组之间的判别代谢模式。在比较自闭症谱系障碍或智力残疾与对照组的模型中,已知在神经传递中起作用的氨基酸具有判别性,并且组氨酸和β - 丙氨酸代谢在模型中被特别突出显示。