Suppr超能文献

Analytic methods to find beating transitions of asymmetric Gaussian beams in GNLS equations.

作者信息

Ianetz David, Schiff Jeremy

机构信息

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.

出版信息

Chaos. 2018 Jan;28(1):013116. doi: 10.1063/1.5001484.

Abstract

In a simple model of propagation of asymmetric Gaussian beams in nonlinear waveguides, described by a reduction to ordinary differential equations of generalized nonlinear Schrödinger equations with cubic-quintic (CQ) and saturable (SAT) nonlinearities and a graded-index profile, the beam widths exhibit two different types of beating behavior, with transitions between them. We present an analytic model to explain these phenomena, which originate in a 1:1 resonance in a 2 degree-of-freedom Hamiltonian system. We show how small oscillations near a fixed point close to 1:1 resonance in such a system can be approximated using an integrable Hamiltonian and, ultimately, a single first order differential equation. In particular, the beating transitions can be located from coincidences of roots of a pair of quadratic equations, with coefficients determined (in a highly complex manner) by the internal parameters and initial conditions of the original system. The results of the analytic model agree with the numerics of the original system over large parameter ranges, and allow new predictions that can be verified directly. In the CQ case, we identify a band of beam energies for which there is only a single beating transition (as opposed to 0 or 2) as the eccentricity is increased. In the SAT case, we explain the sudden (dis)appearance of beating transitions for certain values of the other parameters as the grade-index is changed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验