Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Centre for Cognitive Ageing and Cognitive Epidemiology and UK Dementia Research Institute Edinburgh Dementia Research Centre, University of Edinburgh, Edinburgh, UK.
Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand.
Sci Rep. 2018 Feb 1;8(1):2132. doi: 10.1038/s41598-018-19781-5.
Perivascular Spaces (PVS) are a feature of Small Vessel Disease (SVD), and are an important part of the brain's circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS from MRI. We used ordered logit models and visual rating scales as alternative ground truth for Frangi filter parameter optimization and evaluation. We optimized and validated our proposed models on two independent cohorts, a dementia sample (N = 20) and patients who previously had mild to moderate stroke (N = 48). Results demonstrate the robustness and generalisability of our segmentation method. Segmentation-based PVS burden estimates correlated well with neuroradiological assessments (Spearman's ρ = 0.74, p < 0.001), supporting the potential of our proposed method.
血管周围间隙(PVS)是小血管疾病(SVD)的特征,是大脑循环和神经胶质淋巴系统的重要组成部分。磁共振成像(MRI)上 PVS 的定量分析对于了解它们与神经退行性疾病的关系非常重要。在这项工作中,我们提出了一种基于 3D Frangi 滤波的分割技术,用于从 MRI 中提取 PVS。我们使用有序逻辑回归模型和视觉评分量表作为 Frangi 滤波器参数优化和评估的替代真实值。我们在两个独立的队列(痴呆症样本,N=20 和之前有轻度至中度中风的患者,N=48)上对我们提出的模型进行了优化和验证。结果表明我们的分割方法具有稳健性和通用性。基于分割的 PVS 负担估计与神经放射学评估高度相关(Spearman's ρ=0.74,p<0.001),支持我们提出的方法的潜力。