Suppr超能文献

在离散形态数据的系统发育分析中评估分支支持度时,概率方法优于简约法。

Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data.

作者信息

O'Reilly Joseph E, Puttick Mark N, Pisani Davide, Donoghue Philip C J

机构信息

School of Earth Sciences University of Bristol Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK.

Department of Earth Sciences The Natural History Museum Cromwell Road London SW7 5BD UK.

出版信息

Palaeontology. 2018 Jan;61(1):105-118. doi: 10.1111/pala.12330. Epub 2017 Oct 31.

Abstract

Fossil taxa are critical to inferences of historical diversity and the origins of modern biodiversity, but realizing their evolutionary significance is contingent on restoring fossil species to their correct position within the tree of life. For most fossil species, morphology is the only source of data for phylogenetic inference; this has traditionally been analysed using parsimony, the predominance of which is currently challenged by the development of probabilistic models that achieve greater phylogenetic accuracy. Here, based on simulated and empirical datasets, we explore the relative efficacy of competing phylogenetic methods in terms of clade support. We characterize clade support using bootstrapping for parsimony and Maximum Likelihood, and intrinsic Bayesian posterior probabilities, collapsing branches that exhibit less than 50% support. Ignoring node support, Bayesian inference is the most accurate method in estimating the tree used to simulate the data. After assessing clade support, Bayesian and Maximum Likelihood exhibit comparable levels of accuracy, and parsimony remains the least accurate method. However, Maximum Likelihood is less precise than Bayesian phylogeny estimation, and Bayesian inference recaptures more correct nodes with higher support compared to all other methods, including Maximum Likelihood. We assess the effects of these findings on empirical phylogenies. Our results indicate probabilistic methods should be favoured over parsimony.

摘要

化石分类群对于推断历史多样性和现代生物多样性的起源至关重要,但要认识到它们的进化意义,取决于将化石物种恢复到生命之树中正确的位置。对于大多数化石物种而言,形态学是系统发育推断的唯一数据来源;传统上一直使用简约法对此进行分析,而目前概率模型的发展对简约法的主导地位提出了挑战,概率模型能实现更高的系统发育准确性。在此,基于模拟数据集和实证数据集,我们从分支支持度方面探讨了相互竞争的系统发育方法的相对有效性。我们使用简约法和最大似然法的自展法以及内在贝叶斯后验概率来表征分支支持度,合并支持度低于50%的分支。忽略节点支持度的情况下,贝叶斯推断是估计用于模拟数据的树时最准确的方法。在评估分支支持度后,贝叶斯法和最大似然法表现出相当的准确性水平,而简约法仍然是最不准确的方法。然而,最大似然法在系统发育估计方面不如贝叶斯法精确,并且与包括最大似然法在内的所有其他方法相比,贝叶斯推断能重新获得更多具有更高支持度的正确节点。我们评估了这些发现对实证系统发育的影响。我们的结果表明,概率方法应优于简约法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fca/5784394/120650b0ee99/PALA-61-105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验