Suppr超能文献

多变量人工胰腺系统中未宣布的进餐自动检测和估计。

Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System.

机构信息

1 Department of Chemical and Biological Engineering, Illinois Institute of Technology , Chicago, Illinois.

2 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.

出版信息

Diabetes Technol Ther. 2018 Mar;20(3):235-246. doi: 10.1089/dia.2017.0364. Epub 2018 Feb 6.

Abstract

BACKGROUND

Automatically attenuating the postprandial rise in the blood glucose concentration without manual meal announcement is a significant challenge for artificial pancreas (AP) systems. In this study, a meal module is proposed to detect the consumption of a meal and to estimate the amount of carbohydrate (CHO) intake.

METHODS

The meals are detected based on qualitative variables describing variation of continuous glucose monitoring (CGM) readings. The CHO content of the meals/snacks is estimated by a fuzzy system using CGM and subcutaneous insulin delivery data. The meal bolus amount is computed according to the patient's insulin to CHO ratio. Integration of the meal module into a multivariable AP system allows revision of estimated CHO based on knowledge about physical activity, sleep, and the risk of hypoglycemia before the final decision for a meal bolus is made.

RESULTS

The algorithm is evaluated by using 117 meals/snacks in retrospective data from 11 subjects with type 1 diabetes. Sensitivity, defined as the percentage of correctly detected meals and snacks, is 93.5% for meals and 68.0% for snacks. The percentage of false positives, defined as the proportion of false detections relative to the total number of detected meals and snacks, is 20.8%.

CONCLUSIONS

Integration of a meal detection module in an AP system is a further step toward an automated AP without manual entries. Detection of a consumed meal/snack and infusion of insulin boluses using an estimate of CHO enables the AP system to automatically prevent postprandial hyperglycemia.

摘要

背景

无需手动报餐即可自动降低餐后血糖浓度升高,这对人工胰腺(AP)系统来说是一个重大挑战。本研究提出了一个餐食模块,用于检测餐食的摄入并估计碳水化合物(CHO)的摄入量。

方法

餐食是根据描述连续血糖监测(CGM)读数变化的定性变量来检测的。使用 CGM 和皮下胰岛素输注数据,通过模糊系统估算餐食/零食的 CHO 含量。根据患者的胰岛素与 CHO 比例计算餐食推注量。将餐食模块集成到多变量 AP 系统中,允许根据运动、睡眠和低血糖风险的知识来修正对 CHO 的估计,然后再做出最终的餐食推注决策。

结果

通过使用 11 名 1 型糖尿病患者的回顾性数据中的 117 次餐食/零食对该算法进行了评估。敏感度定义为正确检测到的餐食和零食的百分比,对于餐食为 93.5%,对于零食为 68.0%。假阳性率定义为相对于检测到的餐食和零食总数的错误检测比例,为 20.8%。

结论

将餐食检测模块集成到 AP 系统中是实现无需手动输入的自动 AP 的又一步。通过估计 CHO 来检测摄入的餐食/零食并输注胰岛素推注量,使 AP 系统能够自动预防餐后高血糖。

相似文献

3
Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement.人工胰腺:在无进餐通知情况下评估ARG算法
J Diabetes Sci Technol. 2019 Nov;13(6):1035-1043. doi: 10.1177/1932296819864585. Epub 2019 Jul 24.
5
Closed-Loop Control Without Meal Announcement in Type 1 Diabetes.闭环控制无需告知用餐在 1 型糖尿病中的应用。
Diabetes Technol Ther. 2017 Sep;19(9):527-532. doi: 10.1089/dia.2017.0078. Epub 2017 Aug 2.

引用本文的文献

1
Metabolic Models, in Silico Trials, and Algorithms.代谢模型、虚拟试验与算法
J Diabetes Sci Technol. 2025 Jul;19(4):895-907. doi: 10.1177/19322968251338300. Epub 2025 Jul 1.
3
Diabetes management in the era of artificial intelligence.人工智能时代的糖尿病管理
Arch Med Sci Atheroscler Dis. 2024 Jun 25;9:e122-e128. doi: 10.5114/amsad/183420. eCollection 2024.

本文引用的文献

2
Closed-Loop Control Without Meal Announcement in Type 1 Diabetes.闭环控制无需告知用餐在 1 型糖尿病中的应用。
Diabetes Technol Ther. 2017 Sep;19(9):527-532. doi: 10.1089/dia.2017.0078. Epub 2017 Aug 2.
6
Physiology-Invariant Meal Detection for Type 1 Diabetes.1型糖尿病的生理不变性进餐检测
Diabetes Technol Ther. 2016 Oct;18(10):616-624. doi: 10.1089/dia.2015.0266. Epub 2016 Oct 5.
7
Hypoglycemia Detection and Carbohydrate Suggestion in an Artificial Pancreas.人工胰腺中的低血糖检测与碳水化合物建议
J Diabetes Sci Technol. 2016 Nov 1;10(6):1236-1244. doi: 10.1177/1932296816658666. Print 2016 Nov.
8
Coming of age: the artificial pancreas for type 1 diabetes.走向成熟:1型糖尿病的人工胰腺
Diabetologia. 2016 Sep;59(9):1795-805. doi: 10.1007/s00125-016-4022-4. Epub 2016 Jun 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验