Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
Accid Anal Prev. 2018 Apr;113:38-46. doi: 10.1016/j.aap.2018.01.015. Epub 2018 Mar 7.
Despite the recognized benefits of cycling as a sustainable mode of transportation, cyclists are considered vulnerable road users and there are concerns about their safety. Therefore, it is essential to investigate the factors affecting cyclist safety. The goal of this study is to evaluate and compare different approaches of modeling macro-level cyclist safety as well as investigating factors that contribute to cyclist crashes using a comprehensive list of covariates. Data from 134 traffic analysis zones (TAZs) in the City of Vancouver were used to develop macro-level crash models (CM) incorporating variables related to actual traffic exposure, socio-economics, land use, built environment, and bike network. Four types of CMs were developed under a full Bayesian framework: Poisson lognormal model (PLN), random intercepts PLN model (RIPLN), random parameters PLN model (RPPLN), and spatial PLN model (SPLN). The SPLN model had the best goodness of fit, and the results highlighted the significant effects of spatial correlation. The models showed that the cyclist crashes were positively associated with bike and vehicle exposure measures, households, commercial area density, and signal density. On the other hand, negative associations were found between cyclist crashes and some bike network indicators such as average edge length, average zonal slope, and off-street bike links.
尽管人们认识到自行车作为一种可持续的交通方式的好处,但自行车使用者被认为是弱势道路使用者,他们的安全令人担忧。因此,有必要研究影响自行车使用者安全的因素。本研究的目的是评估和比较不同的方法来模拟宏观层面的自行车安全,并使用综合的协变量列表来研究导致自行车碰撞的因素。使用来自温哥华市 134 个交通分析区(TAZ)的数据,开发了包含与实际交通暴露、社会经济、土地利用、建筑环境和自行车网络相关变量的宏观层面碰撞模型(CM)。在全贝叶斯框架下开发了四种类型的 CM:泊松对数正态模型(PLN)、随机截距 PLN 模型(RIPLN)、随机参数 PLN 模型(RPPLN)和空间 PLN 模型(SPLN)。SPLN 模型具有最佳的拟合优度,结果突出了空间相关性的显著影响。模型表明,自行车碰撞与自行车和车辆暴露测量、家庭、商业区密度和信号密度呈正相关。另一方面,自行车碰撞与一些自行车网络指标(如平均边缘长度、平均区域坡度和非街道自行车连接)之间存在负相关关系。