Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA.
J Chem Phys. 2018 Feb 7;148(5):054503. doi: 10.1063/1.5008490.
Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.
在纳米孔中被限制的流体表现出与相同流体在体相中的性质不同的性质;其中之一是等温压缩系数或弹性模量。纳米孔中流体的模量可以从超声实验中提取,也可以从分子模拟中计算。我们使用巨正则系综中的蒙特卡罗模拟,计算了在正常沸点(87.3 K)下吸附在两种不同形态和不同尺寸模型二氧化硅孔中的液态氩的模量。对于球形孔,对于所有直径超过 2nm 的孔径,我们得到了流体模量与蒸汽压的对数依赖性。在饱和状态下计算模量表明,球形孔中流体的模量是孔径倒数的线性函数。计算圆柱形孔中流体的模量的结果过于分散,无法得出定量结论。我们在更高的温度(119.6 K)下进行了额外的模拟,在更高的温度下,蒙特卡罗插入和删除操作变得更加有效。在更高温度下的模拟结果证实了圆柱形孔的这两种规律,并显示了不同几何形状的孔中流体模量之间的定量差异。这两种观察到的模量规律都源于应用于受限流体的泰特-穆尔纳甘方程。我们的结果,以及纳米多孔介质的有效介质理论的发展,为分析实验测量的饱和流体纳米多孔材料的弹性性质奠定了基础。