Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
J Colloid Interface Sci. 2018 May 1;517:176-181. doi: 10.1016/j.jcis.2017.12.056. Epub 2017 Dec 20.
Microelectromechanical systems (MEMS) have enabled the fabrication of silicon nanopore membranes (SNM) with uniform non-overlapping "slit shaped" pores. The application of SNM has been suggested for high selectivity of biomolecules in a variety of medical filtration applications. The aim of this study was to rigorously quantify the differences in sieving between slit pore SNM and more commonly modeled cylindrical pore membranes, including effects of the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) interactions. Applying equations derived for SNM in previous work, we compare the partition coefficient of slit and cylindrical pore membranes while accounting for both steric and XDLVO interactions. Simple, steric approximations demonstrate that slit pore membranes exhibit significantly lower partition coefficients than cylindrical pore models. Incorporating XDLVO interactions results in an even more marked difference between slit pore and cylindrical pore membranes. These partition coefficients were used to evaluate changes in beta-2-microglobulin (B2M) selectivity. The data demonstrate that XDLVO interactions increase the selectivity advantage that slit pores possess over cylindrical pores, particularly for larger values of the acid-base decay constant. Finally, the bovine serum albumin (BSA) to B2M selectivity ratio was investigated. The selectivity ratio appears larger in slit pores than cylindrical pores for all cases, indicating that slit pores are particularly well suited for hemofiltration applications. The results of this study have significant implications for the application of SNM in membrane processes where highly selective separation of biomolecules is desirable.
微机电系统 (MEMS) 使得硅纳米孔膜 (SNM) 的制造成为可能,这种膜具有均匀且不重叠的“狭缝状”孔。SNM 的应用已被建议用于各种医疗过滤应用中,以实现生物分子的高选择性。本研究的目的是严格量化狭缝孔 SNM 与更常见的圆柱形孔膜之间的筛分差异,包括扩展的德加古林、朗道、维韦和奥弗贝克 (XDLVO) 相互作用的影响。我们应用之前的工作中为 SNM 推导的方程,在考虑到空间和 XDLVO 相互作用的情况下,比较了狭缝和圆柱形孔膜的分配系数。简单的空间近似表明,狭缝孔膜的分配系数明显低于圆柱形孔模型。考虑 XDLVO 相互作用会导致狭缝孔和圆柱形孔膜之间的差异更加显著。这些分配系数用于评估β-2-微球蛋白 (B2M) 选择性的变化。数据表明,XDLVO 相互作用增加了狭缝孔相对于圆柱形孔的选择性优势,特别是对于酸碱衰减常数较大的值。最后,研究了牛血清白蛋白 (BSA) 与 B2M 的选择性比值。对于所有情况,狭缝孔的选择性比值都大于圆柱形孔,这表明狭缝孔特别适合血液过滤应用。本研究的结果对 SNM 在需要高度选择性分离生物分子的膜过程中的应用具有重要意义。