Suppr超能文献

工程化活体材料:利用生物系统指导智能材料组装的前景与挑战。

Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials.

机构信息

School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA.

出版信息

Adv Mater. 2018 May;30(19):e1704847. doi: 10.1002/adma.201704847. Epub 2018 Feb 12.

Abstract

Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self-healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large-scale implementation, and production methods. In addition, a conceptual exploration of the fundamental criteria of ELM technology and its future challenges is presented. Cradled within the rich intersection of synthetic biology and self-assembling materials, the development of ELM technologies allows the power of biology to be leveraged to grow complex structures and objects using a palette of bio-nanomaterials.

摘要

新型工程平台具有巨大的发展潜力,可用于操纵生物学来生产可编程的先进材料。此类系统将具有生物体的自主、自适应和自我修复特性,但将以组装具有设计理化或机械性能的大块材料为目标,跨越多个长度尺度。本文回顾了此类工程化活体材料 (ELM) 的早期研究进展,重点介绍了工程化细菌系统、整合无机成分的活体复合材料、大规模实施的成功案例以及生产方法。此外,还对 ELM 技术的基本标准及其未来挑战进行了概念性探讨。ELM 技术的发展使合成生物学和自组装材料的丰富交叉领域中,允许利用生物学的力量来利用生物纳米材料来生长复杂结构和物体。

相似文献

4
Engineered Living Materials For Sustainability.用于可持续发展的工程化活体材料。
Chem Rev. 2023 Mar 8;123(5):2349-2419. doi: 10.1021/acs.chemrev.2c00512. Epub 2022 Dec 13.
5
Graphene-Based Engineered Living Materials.基于石墨烯的工程化活体材料。
Small Methods. 2024 Jan;8(1):e2300930. doi: 10.1002/smtd.202300930. Epub 2023 Oct 8.
7
Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly.碱基相互作用导向的仿生超分子自组装。
Acc Chem Res. 2022 Jun 21;55(12):1609-1619. doi: 10.1021/acs.accounts.2c00135. Epub 2022 Jun 7.
8
Engineering living functional materials.工程化生物功能材料。
ACS Synth Biol. 2015 Jan 16;4(1):8-11. doi: 10.1021/sb500113b.

引用本文的文献

5
Photosystem I and ZIF-8 Interfacing: Entrapment and Immobilization.光系统I与ZIF-8的界面连接:捕获与固定
Inorg Chem. 2025 Jun 2;64(21):10369-10378. doi: 10.1021/acs.inorgchem.4c05441. Epub 2025 May 20.
7
Digital Fabrication of Biologically Cemented Spatial Structures.生物粘结空间结构的数字制造
3D Print Addit Manuf. 2025 Apr 14;12(2):181-191. doi: 10.1089/3dp.2023.0339. eCollection 2025 Apr.
8
Yeast-Driven and Bioimpedance-Sensitive Biohybrid Soft Robots.酵母驱动且对生物阻抗敏感的生物杂交软机器人
Cyborg Bionic Syst. 2025 Apr 25;6:0233. doi: 10.34133/cbsystems.0233. eCollection 2025.
10
Preclinical Assessment of Living Therapeutic Materials: State-of-Art and Challenges.活性治疗材料的临床前评估:现状与挑战
ACS Biomater Sci Eng. 2025 May 12;11(5):2584-2600. doi: 10.1021/acsbiomaterials.5c00247. Epub 2025 Apr 15.

本文引用的文献

10
A three-step framework for programming pattern formation.用于编程模式形成的三步框架。
Curr Opin Chem Biol. 2017 Oct;40:1-7. doi: 10.1016/j.cbpa.2017.04.008. Epub 2017 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验