Dipartimento di Fisica, Università "La Sapienza," P. le A. Moro 5, I-00185, Rome, Italy.
Dipartimento di Fisica, Università "La Sapienza," P.le A. Moro 5, I-00185, Rome, Italy and INFN-Sezione di Roma 1, and CNR-Nanotec, UOS di Roma, Rome, Italy.
Phys Rev E. 2018 Jan;97(1-1):012152. doi: 10.1103/PhysRevE.97.012152.
We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.
我们首先对零温极限下随机正则图上的随机场伊辛模型上的置信传播(BP)算法进行了实证研究。我们引入了 BP 方程的极值解的概念,并利用它们将一部分自旋固定在其基态配置中。在相变点,未受约束的自旋分数渗流,其数量随系统尺寸发散。这反过来使得相关的优化问题在临界区域变得非常非平凡。利用极值解提供的 BP 消息的界,我们设计了一种新的、非常易于实现的 BP 方案,它能够输出大量稳定的平衡点。一方面,这个新算法能够在竞争时间内以高概率提供最小能量配置。另一方面,我们发现 BP 算法的平衡点数量在临界区域随系统尺寸增长。这一意外的特征对这类模型的物理性质提出了新的相关问题。