Suppr超能文献

加权网络上的阈值驱动传染

Threshold driven contagion on weighted networks.

作者信息

Unicomb Samuel, Iñiguez Gerardo, Karsai Márton

机构信息

Univ Lyon, ENS de Lyon, Inria, CNRS, UCB Lyon 1, LIP UMR 5668, IXXI, F-69342, Lyon, France.

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.

出版信息

Sci Rep. 2018 Feb 15;8(1):3094. doi: 10.1038/s41598-018-21261-9.

Abstract

Weighted networks capture the structure of complex systems where interaction strength is meaningful. This information is essential to a large number of processes, such as threshold dynamics, where link weights reflect the amount of influence that neighbours have in determining a node's behaviour. Despite describing numerous cascading phenomena, such as neural firing or social contagion, the modelling of threshold dynamics on weighted networks has been largely overlooked. We fill this gap by studying a dynamical threshold model over synthetic and real weighted networks with numerical and analytical tools. We show that the time of cascade emergence depends non-monotonously on weight heterogeneities, which accelerate or decelerate the dynamics, and lead to non-trivial parameter spaces for various networks and weight distributions. Our methodology applies to arbitrary binary state processes and link properties, and may prove instrumental in understanding the role of edge heterogeneities in various natural and social phenomena.

摘要

加权网络捕捉了交互强度具有意义的复杂系统的结构。这些信息对于大量过程至关重要,比如阈值动力学,其中链路权重反映了邻居在决定节点行为时的影响程度。尽管描述了众多级联现象,如神经放电或社会传染,但加权网络上阈值动力学的建模在很大程度上被忽视了。我们通过使用数值和分析工具研究合成和真实加权网络上的动态阈值模型来填补这一空白。我们表明,级联出现的时间非单调地依赖于权重异质性,权重异质性会加速或减缓动力学,并导致各种网络和权重分布的非平凡参数空间。我们的方法适用于任意二元状态过程和链路属性,并且可能有助于理解边缘异质性在各种自然和社会现象中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af59/5814462/5c59951240b5/41598_2018_21261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验