Suppr超能文献

上转换在光动力疗法中的应用:深入探讨。

Upconversion in photodynamic therapy: plumbing the depths.

机构信息

Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

Dalton Trans. 2018 Jul 14;47(26):8571-8580. doi: 10.1039/c8dt00087e. Epub 2018 Feb 16.

Abstract

Photodynamic therapy (PDT) involves the combination of non-toxic dyes called photosensitizers (PS) and harmless visible light that interact with ambient oxygen to give reactive oxygen species (ROS) that can damage biomolecules and kill cells. PDT has mostly been developed as a cancer therapy but can also be used as an antimicrobial approach against localized infections. However even the longest wavelength used for exciting PS (in the 700 nm region) has relatively poor tissue penetration, and many PS are much better excited by blue and green light. Therefore upconversion nanoparticles (UCNPs) have been investigated in order to allow deeper-penetrating near-infrared light (980 nm or 810 nm) to be used for PDT. NaYF nanoparticles doped with Yb and Er or with Tm and Er have been attached to PS either by covalent conjugation, or by absorption to the coating or shell (used to render the UCNPs biocompatible). Forster resonance energy transfer to the PS then allows NIR light energy to be transduced into ROS leading to cell killing and tumor regression. Some studies have experimentally demonstrated the deep tissue advantage of UCNP-PDT. Recent advances have included dye-sensitized UCNPs and UCNPs coupled to PS, and other potentially synergistic drug molecules or techniques. A variety of bioimaging modalities have also been combined with upconversion PDT. Further studies are necessary to optimize the drug-delivery abilities of the UCNPs, improve the quantum yields, allow intravenous injection and tumor targeting, and ensure lack of toxicity at the required doses before potential clinical applications.

摘要

光动力疗法(PDT)涉及无毒染料(称为光敏剂(PS))和无害可见光的结合,它们与环境氧气相互作用产生具有细胞毒性的活性氧(ROS),从而破坏生物分子并杀死细胞。PDT 主要作为癌症治疗方法开发,但也可用作针对局部感染的抗菌方法。然而,即使用于激发 PS 的最长波长(在 700nm 区域)也具有相对较差的组织穿透性,并且许多 PS 更适合用蓝光和绿光激发。因此,已经研究了上转换纳米粒子(UCNP),以便可以使用穿透更深的近红外光(980nm 或 810nm)进行 PDT。掺杂有 Yb 和 Er 或 Tm 和 Er 的 NaYF 纳米粒子通过共价键合,或通过吸收到涂层或壳(用于使 UCNP 具有生物相容性)附着到 PS 上。然后,PS 中的福斯特共振能量转移允许将 NIR 光能转换为 ROS,从而导致细胞杀伤和肿瘤消退。一些研究已经实验证明了 UCNP-PDT 的深层组织优势。最近的进展包括染料敏化的 UCNP 和与 PS 结合的 UCNP,以及其他潜在协同的药物分子或技术。各种生物成像方式也与上转换 PDT 相结合。在潜在的临床应用之前,还需要进一步研究来优化 UCNP 的药物输送能力,提高量子产率,允许静脉内注射和肿瘤靶向,并确保在所需剂量下缺乏毒性。

相似文献

1
Upconversion in photodynamic therapy: plumbing the depths.
Dalton Trans. 2018 Jul 14;47(26):8571-8580. doi: 10.1039/c8dt00087e. Epub 2018 Feb 16.
5
Phthalocyanine-Conjugated Upconversion NaYF :Yb /Er @SiO Nanospheres for NIR-Triggered Photodynamic Therapy in a Tumor Mouse Model.
ChemMedChem. 2017 Dec 19;12(24):2066-2073. doi: 10.1002/cmdc.201700508. Epub 2017 Dec 5.
7
Riboflavin photoactivation by upconversion nanoparticles for cancer treatment.
Sci Rep. 2016 Oct 12;6:35103. doi: 10.1038/srep35103.
8
Activatable Photodynamic Therapy with Therapeutic Effect Prediction Based on a Self-correction Upconversion Nanoprobe.
ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19313-19323. doi: 10.1021/acsami.0c03432. Epub 2020 Apr 20.
10
Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.
Acta Biomater. 2017 Mar 15;51:461-470. doi: 10.1016/j.actbio.2017.01.004. Epub 2017 Jan 4.

引用本文的文献

1
Exploring research dynamics of PDT in anti-infective applications (2004-2024): a bibliometric perspective.
Front Pharmacol. 2025 Jun 20;16:1510690. doi: 10.3389/fphar.2025.1510690. eCollection 2025.
2
Covalent organic framework-based nanoplatforms with tunable mechanical properties for drug delivery and cancer therapy.
Mechanobiol Med. 2023 Sep 28;1(2):100024. doi: 10.1016/j.mbm.2023.100024. eCollection 2023 Dec.
3
Pr Visible to Ultraviolet Upconversion for Antimicrobial Applications.
Nanomaterials (Basel). 2025 Apr 6;15(7):562. doi: 10.3390/nano15070562.
5
Temoporfin-Conjugated PEGylated Poly(,-dimethylacrylamide)-Coated Upconversion Colloid for NIR-Induced Photodynamic Therapy of Pancreatic Cancer.
Biomacromolecules. 2024 Sep 9;25(9):5771-5785. doi: 10.1021/acs.biomac.4c00317. Epub 2024 Jun 18.
6
Water-soluble phthalocyanine photosensitizers for photodynamic therapy.
Turk J Chem. 2023 Sep 26;47(5):837-863. doi: 10.55730/1300-0527.3583. eCollection 2023.
8
ROS-generating nanoplatforms as selective and tunable therapeutic weapons against cancer.
Discov Nano. 2023 Dec 11;18(1):151. doi: 10.1186/s11671-023-03939-w.
9
Liposomes for Cancer Theranostics.
Pharmaceutics. 2023 Oct 11;15(10):2448. doi: 10.3390/pharmaceutics15102448.
10
Photosensitizing deep-seated cancer cells with photoprotein-conjugated upconversion nanoparticles.
J Nanobiotechnology. 2023 Aug 19;21(1):279. doi: 10.1186/s12951-023-02057-0.

本文引用的文献

1
Cell Death Pathways Associated with Photodynamic Therapy: An Update.
Photochem Photobiol. 2018 Mar;94(2):213-218. doi: 10.1111/php.12857. Epub 2018 Jan 16.
2
Targeted Nanomaterials for Phototherapy.
Nanotheranostics. 2017 Jan 1;1(1):38-58. doi: 10.7150/ntno.17694. eCollection 2017.
4
Dye-sensitized lanthanide-doped upconversion nanoparticles.
Chem Soc Rev. 2017 Jul 17;46(14):4150-4167. doi: 10.1039/c7cs00053g.
6
Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging.
ACS Nano. 2017 Apr 25;11(4):4133-4144. doi: 10.1021/acsnano.7b00944. Epub 2017 Mar 22.
7
A "win-win" nanoplatform: TiO:Yb,Ho,F for NIR light-induced synergistic therapy and imaging.
Nanoscale. 2017 Mar 23;9(12):4244-4254. doi: 10.1039/c6nr09717k.
10
Interstitial Photodynamic Therapy-A Focused Review.
Cancers (Basel). 2017 Jan 24;9(2):12. doi: 10.3390/cancers9020012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验