Suppr超能文献

云杉芽蛾(Choristoneura fumiferana)对白桦(Picea glauca)组成性抗性机制的遗传控制和进化潜力。

Genetic control and evolutionary potential of a constitutive resistance mechanism against the spruce budworm (Choristoneura fumiferana) in white spruce (Picea glauca).

机构信息

Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec, QC, G1V 0A6, Canada.

Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada.

出版信息

Heredity (Edinb). 2018 Aug;121(2):142-154. doi: 10.1038/s41437-018-0061-6. Epub 2018 Feb 17.

Abstract

Insect herbivory may drive evolution by selecting for trees with heritable resistance against defoliation. The spruce budworm (Choristoneura fumiferana, SBW) is a highly damaging forest insect pest that can affect population structure of white spruce (Picea glauca) in North America. Resistance against SBW was recently described in white spruce and was linked to three constitutive resistance biomarkers: the phenolic compounds piceol and pungenol, and expression of a beta-glucosidase encoding gene (Pgβglu-1). We investigated the phenotypic variability and heritability of these resistance biomarkers and of picein, the precursor of piceol, in the foliage of 874 trees belonging to 33 full-sib families and 71 clonal lines under evaluation in seven field locations in Eastern Canada. We aimed to (i) determine their genetic control, (ii) estimate the genetic and phenotypic correlations among defense biomarkers, and (iii) determine whether their constitutive levels are associated with detrimental trade-offs on growth. Quantitative genetics analyses indicated that all four traits are moderately to highly heritable. The full-sib and clonal analyses showed that additive and non-additive genetic effects play major and minor roles, respectively. Positive genetic and phenotypic correlations between resistance biomarkers and primary growth indicated that there is no trade-off between total height and height increment and resistance traits, contradicting the GDBH (Growth Differentiation Balance Hypothesis). Our findings about the predominant additive genetic basis of the resistance biomarkers show that adaptive evolution of white spruce natural populations to resist to SBW is possible and that potentially important gains could also be expected from artificial selection.

摘要

昆虫取食可能通过选择具有可遗传抗落叶性的树木来推动进化。云杉芽卷叶蛾(Choristoneura fumiferana,SBW)是一种高度破坏性的森林昆虫害虫,会影响北美白云杉(Picea glauca)的种群结构。最近在白云杉中发现了对 SBW 的抗性,并与三种组成型抗性生物标志物相关联:酚类化合物 piceol 和 pungenol,以及编码基因(Pgβglu-1)的表达β-葡萄糖苷酶。我们调查了 33 个全同胞家系和 71 个无性系的 874 棵树的这些抗性生物标志物和 picein(piceol 的前体)在叶片中的表型变异性和遗传力,这些树木分布在加拿大东部的 7 个野外地点进行评估。我们的目的是:(i)确定它们的遗传控制;(ii)估计防御生物标志物之间的遗传和表型相关性;(iii)确定它们的组成型水平是否与生长的不利权衡有关。数量遗传学分析表明,所有四个性状都是中等到高度可遗传的。全同胞和无性系分析表明,加性和非加性遗传效应分别起主要和次要作用。抗性生物标志物与初级生长之间存在正的遗传和表型相关性,表明在总高度和高度增量与抗性性状之间没有权衡,这与 GDBH(生长分化平衡假说)相矛盾。我们关于抗性生物标志物主要是加性遗传基础的发现表明,白云杉自然种群对 SBW 的适应性进化是可能的,而且从人工选择中也可能获得重要的收益。

相似文献

3
Association genetics of acetophenone defence against spruce budworm in mature white spruce.
BMC Plant Biol. 2018 Oct 12;18(1):231. doi: 10.1186/s12870-018-1434-y.
6
Hydroxyacetophenone defenses in white spruce against spruce budworm.
Evol Appl. 2019 Dec 20;13(1):62-75. doi: 10.1111/eva.12885. eCollection 2020 Jan.
7
function of in the release of acetophenones in white spruce.
PeerJ. 2017 Jul 7;5:e3535. doi: 10.7717/peerj.3535. eCollection 2017.
8
Complementary roles of two classes of defense chemicals in white spruce against spruce budworm.
Planta. 2024 Mar 29;259(5):105. doi: 10.1007/s00425-024-04383-5.
9
Spruce Budworm (Lepidoptera: Tortricidae) Oral Secretions II: Chemistry.
Environ Entomol. 2015 Dec;44(6):1531-43. doi: 10.1093/ee/nvv149. Epub 2015 Oct 9.
10
Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
Ecol Appl. 2017 Mar;27(2):532-544. doi: 10.1002/eap.1463. Epub 2017 Feb 22.

引用本文的文献

1
Reconstructing spruce budworm outbreak severity: a comparison of paleoecological and tree-ring signals.
PLoS One. 2025 Aug 12;20(8):e0329406. doi: 10.1371/journal.pone.0329406. eCollection 2025.
3
The Antioxidative Effects of Picein and Its Neuroprotective Potential: A Review of the Literature.
Molecules. 2022 Sep 21;27(19):6189. doi: 10.3390/molecules27196189.
4
Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program.
PLoS One. 2022 Mar 17;17(3):e0264549. doi: 10.1371/journal.pone.0264549. eCollection 2022.
5
Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits.
Evol Appl. 2020 Aug 11;13(10):2704-2722. doi: 10.1111/eva.13076. eCollection 2020 Dec.
7
Functional and morphological evolution in gymnosperms: A portrait of implicated gene families.
Evol Appl. 2019 Jul 21;13(1):210-227. doi: 10.1111/eva.12839. eCollection 2020 Jan.
8
Hydroxyacetophenone defenses in white spruce against spruce budworm.
Evol Appl. 2019 Dec 20;13(1):62-75. doi: 10.1111/eva.12885. eCollection 2020 Jan.
9
Association genetics of acetophenone defence against spruce budworm in mature white spruce.
BMC Plant Biol. 2018 Oct 12;18(1):231. doi: 10.1186/s12870-018-1434-y.

本文引用的文献

1
The costs of reproduction in plants.
New Phytol. 2002 Sep;155(3):321-348. doi: 10.1046/j.1469-8137.2002.00477.x.
2
THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS.
Evolution. 1983 Nov;37(6):1210-1226. doi: 10.1111/j.1558-5646.1983.tb00236.x.
4
A Framework for Predicting Intraspecific Variation in Plant Defense.
Trends Ecol Evol. 2016 Aug;31(8):646-656. doi: 10.1016/j.tree.2016.05.007. Epub 2016 Jun 7.
5
Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir.
Front Plant Sci. 2015 May 13;6:338. doi: 10.3389/fpls.2015.00338. eCollection 2015.
6
Using genomics to characterize evolutionary potential for conservation of wild populations.
Evol Appl. 2014 Nov;7(9):1008-25. doi: 10.1111/eva.12149. Epub 2014 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验