Suppr超能文献

使用多事件捕获-再捕获模型估计时空变化环境中的扩散。

Estimating dispersal in spatiotemporally variable environments using multievent capture-recapture modeling.

机构信息

Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 LEHNA, Villeurbanne, 69100, France.

EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, CNRS, PSL Research University, Montpellier, F-34293, France.

出版信息

Ecology. 2018 May;99(5):1150-1163. doi: 10.1002/ecy.2195. Epub 2018 Apr 2.

Abstract

Dispersal is a key process in ecological and evolutionary dynamics. Spatiotemporal variation in habitat availability and characteristics has been suggested to be one of the main cause involved in dispersal evolution and has a strong influence on metapopulation dynamics. In recent decades, the study of dispersal has led to the development of capture-recapture (CR) models that allow movement between sites to be quantified, while handling imperfect detection. For studies involving numerous recapture sites, Lagrange et al. () proposed a multievent CR model that allows dispersal to be estimated while omitting site identity by distinguishing between individuals that stay and individuals that move. More recently, Cayuela et al. () extended this model to allow survival and dispersal probabilities to differ for the different types of habitat represented by several sites within a study area. Yet in both of these modeling systems, the state of sites is assumed to be static over time, which is not a realistic assumption in dynamic landscapes. For that purpose, we generalized the multievent CR model proposed by Cayuela et al. () to allow the estimation of dispersal, survival and recapture probabilities when a site may appear or disappear over time (MODEL 1) or when the characteristics of a site fluctuate over space and time (MODEL 2). This paper first presents these two new modeling systems, and then provides an illustration of their efficacy and usefulness by applying them to simulated CR data and data collected on two metapopulations of amphibians. MODEL 1 was tested using CR data recorded on a metapopulation of yellow-bellied toads (Bombina variegata). In this first empirical case, we examined whether the drying-out dynamics of ponds and the past dispersal status of an individual might affect dispersal behavior. Our study revealed that the probability of facultative dispersal (i.e., from a pond group that remained available/flooded) fluctuated between years and was higher in individuals that had previously dispersed. MODEL 2 was tested using CR data collected on a metapopulation of great crested newts (Triturus cristatus). In this second empirical example, we investigated whether the density of alpine newts (Ichthyosaura alpestris), a potential competitor, might affect the dispersal and survival of the crested newt. Our study revealed that the departure rate was lower in ponds with a high density of heterospecifics than in ponds with a low density of heterospecifics at both inter-annual and intra-annual scales. Moreover, annual survival was slightly higher in ponds with a high density of heterospecifics. Overall, our findings indicate that these multievent CR models provide a highly flexible means of modeling dispersal in dynamic landscapes.

摘要

扩散是生态和进化动态中的一个关键过程。栖息地可用性和特征的时空变化被认为是参与扩散进化的主要原因之一,并对复合种群动态有很强的影响。近几十年来,扩散研究导致了捕获-再捕获(CR)模型的发展,这些模型允许量化站点之间的运动,同时处理不完全检测。对于涉及多个再捕获站点的研究,Lagrange 等人()提出了一种多事件 CR 模型,该模型允许在不区分停留和移动个体的情况下通过区分个体来估计扩散。最近,Cayuela 等人()扩展了该模型,允许在研究区域内的多个站点代表的不同类型的栖息地中,生存和扩散概率因栖息地类型而异。然而,在这两种建模系统中,站点的状态都被假设为随时间静态的,这在动态景观中不是一个现实的假设。为此,我们推广了 Cayuela 等人()提出的多事件 CR 模型,以允许在一个站点随时间出现或消失(模型 1)或一个站点的特征随空间和时间波动时(模型 2)估计扩散、生存和再捕获概率。本文首先介绍了这两种新的建模系统,然后通过将其应用于模拟 CR 数据和对两个两栖动物复合种群的收集数据来说明它们的有效性和实用性。模型 1 使用在黄腹铃蟾(Bombina variegata)复合种群上记录的 CR 数据进行了测试。在这个第一个实证案例中,我们检验了池塘的干涸动态和个体过去的扩散状态是否会影响扩散行为。我们的研究表明,从保持可用/淹没的池塘组中进行的机会性扩散(即)的概率在年内波动,并且在以前扩散过的个体中更高。模型 2 使用在大蝾螈(Triturus cristatus)复合种群上收集的 CR 数据进行了测试。在这个第二个实证例子中,我们调查了高山蝾螈(Ichthyosaura alpestris)的密度(一种潜在的竞争者)是否会影响大蝾螈的扩散和生存。我们的研究表明,在年内和年内的尺度上,与低密度异质种的池塘相比,高异质种密度的池塘的离开率较低。此外,高异质种密度的池塘的年生存率略高。总体而言,我们的研究结果表明,这些多事件 CR 模型为在动态景观中建模扩散提供了一种非常灵活的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验