Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506.
National Renewable Energy Laboratory, Golden, Colorado 80401.
J Biol Chem. 2018 Mar 30;293(13):4688-4701. doi: 10.1074/jbc.RA117.000707. Epub 2018 Feb 9.
A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV-visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to interrogate the putative bifurcating FAD. CD aided in assigning the measured reduction midpoint potentials (° values) to individual flavins, and the ° values tested the accepted model regarding the redox properties required for bifurcation. We found that the higher-° flavin displays sequential one-electron (1-e) reductions to anionic semiquinone and then to hydroquinone, consistent with the reactivity seen in canonical ETFs. In contrast, the lower-° flavin displayed a single two-electron (2-e) reduction without detectable accumulation of semiquinone, consistent with unstable semiquinone states, as required for bifurcation. This is the first demonstration that a FixAB protein possesses the thermodynamic prerequisites for bifurcating activity, and the separation of distinct optical signatures for the two flavins lays a foundation for mechanistic studies to learn how electron flow can be directed in a protein environment. We propose that a novel optical signal observed at long wavelength may reflect electron delocalization between the two flavins.
生物学中一种新发现的第三种能量守恒基本机制——电子分支,利用放能的氧化还原反应来驱动需能的氧化还原反应。基于黄素的电子分支为要求苛刻的化学反应(如将氮气还原为氨)提供低势能电子。我们利用固氮菌中的异源二聚黄素酶 FixAB 来阐明支撑基于黄素的电子分支的独特性质。FixAB 与典型的电子传递黄素蛋白 (ETF) 的区别在于第二个 FAD 取代了典型 ETF 的 AMP。我们利用近紫外可见圆二色性 (CD) 光谱来解析 FixAB 中不同黄素位点的信号,并探究假定的分支 FAD。CD 有助于将测量的还原中点电位 (°值) 分配给各个黄素,并通过 ° 值检验了分支所需的氧化还原性质的公认模型。我们发现,较高 ° 值的黄素显示出连续的单电子 (1-e) 还原,生成阴离子半醌,然后生成氢醌,这与典型 ETF 中的反应性一致。相比之下,较低 ° 值的黄素仅显示出单个双电子 (2-e) 还原,没有可检测到的半醌积累,这与分支所需的不稳定半醌状态一致。这是首次证明 FixAB 蛋白具有分支活性的热力学前提条件,并且两个黄素的不同光学特征的分离为了解电子流如何在蛋白质环境中定向的机制研究奠定了基础。我们提出,在长波长处观察到的新光学信号可能反映了两个黄素之间的电子离域。