Suppr超能文献

探测单原子电子自旋共振中的量子相干性。

Probing quantum coherence in single-atom electron spin resonance.

作者信息

Willke Philip, Paul William, Natterer Fabian D, Yang Kai, Bae Yujeong, Choi Taeyoung, Fernández-Rossier Joaquin, Heinrich Andreas J, Lutz Christoper P

机构信息

Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea.

IBM Almaden Research Center, San Jose, CA 95120, USA.

出版信息

Sci Adv. 2018 Feb 16;4(2):eaaq1543. doi: 10.1126/sciadv.aaq1543. eCollection 2018 Feb.

Abstract

Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins.

摘要

单个自旋中心的自旋共振使得从量子信息技术到原子尺度磁力测量等各种应用成为可能。为了保护自旋的量子特性,控制其局部环境,包括能量弛豫和退相干过程,至关重要。然而,在大多数现有架构中,环境由晶体结构和电接触固定。最近,自旋极化扫描隧道显微镜(STM)与电子自旋共振(ESR)相结合,使得能够以前所未有的空间和能量分辨率组合研究单个吸附原子和原子间耦合。我们通过使用STM针尖作为可变电极精确调节相位相干时间,阐明并控制铁单自旋与其原子尺度环境之间的相互作用。我们发现退相干率是两个主要贡献之和。第一个贡献与隧道电流呈线性比例关系,表明平均而言,每个隧穿电子会导致一次退相事件。第二个贡献即使在没有电流时也有效,源于针尖自旋的热激活自旋翻转过程。理解这些相互作用使我们能够最大化并提高能量分辨率。它还使我们能够最大化ESR信号的幅度,这甚至支持在高达4 K的高温下进行测量。因此,ESR-STM能够控制单个电可及自旋中的量子相干。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/5815865/144715db0b7b/aaq1543-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验