Department of Neuroscience , Yale University School of Medicine , New Haven , Connecticut 06510 , United States.
ACS Chem Neurosci. 2018 Sep 19;9(9):2127-2145. doi: 10.1021/acschemneuro.7b00505. Epub 2018 Mar 1.
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
精神分裂症与认知能力的核心缺陷和新进化的前额叶联合皮层(PFC)的功能障碍有关。特别是,精神分裂症的神经病理学研究发现,背外侧前额叶皮层(dlPFC)深层 III 层的锥体神经元微电路选择性萎缩,以及相关 GABA 能中间神经元的代偿性减弱。猴子的研究表明,这些深层 III 层微电路中的反复兴奋产生了工作记忆和抽象思维所需的精确模式、持续的放电。重要的是,III 层棘突上的兴奋性突触在分子水平上受到独特的调节,这可能使它们特别容易受到遗传和/或环境的影响。谷氨酸能作用对胆碱能刺激非常依赖,并且存在内在的机制可以迅速减弱连接,例如在压力下。特别是,前馈环磷酸腺苷(cAMP)-钙信号通过打开附近的钾通道,迅速减弱网络连接和神经元放电。调节这个过程的许多机制在精神分裂症中发生改变,或者与遗传损伤有关。目前的数据表明,dlPFC 第三层电路存在“双重打击”:围产期由于遗传错误和/或炎症损伤导致连接初始受损,使皮质容易萎缩,随后在青春期出现第二次皮质丧失,例如在疾病发作时由压力驱动。III 层电路的独特分子调节可能为炎症使神经元对压力的反应去抑制提供了一个枢纽。了解这些机制可能有助于阐明精神分裂症中 dlPFC 的易感性,并为新的治疗靶点提供见解。