School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA.
New Phytol. 2018 Apr;218(2):530-541. doi: 10.1111/nph.15041. Epub 2018 Feb 23.
Root-soil interactions fundamentally affect the terrestrial carbon (C) cycle and thereby ecosystem feedbacks to climate change. This study addressed the question of whether the secondary metabolism of different temperate forest tree species can affect soil microbial respiration. We hypothesized that phenolics can both increase and decrease respiration depending on their function as food source, mobilizer of other soil resources, signaling compound, or toxin. We analyzed the phenolic compounds from root exudates and root tissue extracts of six tree species grown in a glasshouse using high-performance liquid chromatography. We then tested the effect of individual phenolic compounds, representing the major identified phenylpropanoid compound classes, on microbial respiration through a 5-d soil incubation. Phenolic root profiles were highly species-specific. Of the eight classes identified, flavonoids were the most abundant, with flavanols being the predominating sub-class. Phenolic effects on microbial respiration ranged from a 26% decrease to a 46% increase, with reduced respiration occurring in the presence of compounds possessing a catechol ring. Tree species variation in root phenolic composition influences the magnitude and direction of root effects on microbial respiration. Our data support the hypothesis that functional group rather than biosynthetic class determines the root phenolic effect on soil C cycling.
根-土相互作用从根本上影响陆地碳(C)循环,从而影响生态系统对气候变化的反馈。本研究探讨了不同温带森林树种的次生代谢物是否会影响土壤微生物呼吸这一问题。我们假设酚类物质可以根据其作为食物源、其他土壤资源的调节剂、信号化合物或毒素的功能,同时增加和减少呼吸。我们使用高效液相色谱法分析了在温室中生长的 6 个树种的根分泌物和根组织提取物中的酚类化合物。然后,我们通过 5 天的土壤培养实验,测试了代表主要鉴定的苯丙烷类化合物类别的 8 种酚类化合物对微生物呼吸的影响。酚类根谱高度具有物种特异性。在所鉴定的 8 个类别中,类黄酮最为丰富,其中黄烷醇是主要的亚类。酚类物质对微生物呼吸的影响范围从减少 26%到增加 46%,而具有邻苯二酚环的化合物存在时,呼吸会减少。根中酚类组成的树种变化影响根对微生物呼吸的影响的大小和方向。我们的数据支持这样一种假设,即功能组而不是生物合成类决定了根对土壤 C 循环的酚类效应。