Suppr超能文献

组学数据在肾脏病学中的应用

How Omics Data Can Be Used in Nephrology.

机构信息

Nephrology and Endocrinology Divisions, Massachusetts General Hospital, Boston, MA.

出版信息

Am J Kidney Dis. 2018 Jul;72(1):129-135. doi: 10.1053/j.ajkd.2017.12.008. Epub 2018 Feb 23.

Abstract

Advances in technology and computing now permit the high-throughput analysis of multiple domains of biological information, including the genome, transcriptome, proteome, and metabolome. These omics approaches, particularly comprehensive analysis of the genome, have catalyzed major discoveries in science and medicine, including in nephrology. However, they also generate large complex data sets that can be difficult to synthesize from a clinical perspective. This article seeks to provide an overview that makes omics technologies relevant to the practicing nephrologist, framing these tools as an extension of how we approach patient care in the clinic. More specifically, omics technologies reinforce the impact that genetic mutations can have on a range of kidney disorders, expand the catalogue of uremic molecules that accumulate in blood with kidney failure, enhance our ability to scrutinize urine beyond urinalysis for insight on renal pathology, and enable more extensive characterization of kidney tissue when a biopsy is performed. Although assay methodologies vary widely, all omics technologies share a common conceptual framework that embraces unbiased discovery at the molecular level. Ultimately, the application of these technologies seeks to elucidate a more mechanistic and individualized approach to the diagnosis and treatment of human disease.

摘要

技术和计算的进步现在允许对多个生物学信息领域进行高通量分析,包括基因组、转录组、蛋白质组和代谢组。这些组学方法,特别是对基因组的全面分析,推动了科学和医学的重大发现,包括肾脏病学。然而,它们也产生了大量复杂的数据集,从临床角度来看,这些数据集很难综合。本文旨在提供一个概述,使组学技术与实践肾脏病学家相关联,将这些工具视为我们在临床中治疗患者的方式的延伸。更具体地说,组学技术增强了基因突变对一系列肾脏疾病的影响,扩大了随着肾衰竭在血液中积累的尿毒症分子的目录,增强了我们超越尿液分析来深入研究肾脏病理的能力,并在进行活检时能够更广泛地描述肾脏组织。尽管分析方法差异很大,但所有组学技术都具有共同的概念框架,即从分子水平上进行无偏见的发现。最终,这些技术的应用旨在阐明更具机制性和个体化的方法来诊断和治疗人类疾病。

相似文献

1
How Omics Data Can Be Used in Nephrology.
Am J Kidney Dis. 2018 Jul;72(1):129-135. doi: 10.1053/j.ajkd.2017.12.008. Epub 2018 Feb 23.
3
Integrated genomics and metabolomics in nephrology.
Nephrol Dial Transplant. 2014 Aug;29(8):1467-74. doi: 10.1093/ndt/gft492. Epub 2013 Dec 22.
4
The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease.
Nephrol Dial Transplant. 2016 Dec;31(12):2003-2011. doi: 10.1093/ndt/gfv364. Epub 2015 Oct 20.
5
From -omics to personalized medicine in nephrology: integration is the key.
Nephrol Dial Transplant. 2013 Jan;28(1):24-8. doi: 10.1093/ndt/gfs483. Epub 2012 Dec 9.
6
Recent Development in Omics Studies.
Adv Exp Med Biol. 2018;1102:1-9. doi: 10.1007/978-3-319-98758-3_1.
7
The nephrologist of tomorrow: towards a kidney-omic future.
Pediatr Nephrol. 2017 Mar;32(3):393-404. doi: 10.1007/s00467-016-3357-x. Epub 2016 Mar 9.
9
The challenge of the application of 'omics technologies in chemicals risk assessment: Background and outlook.
Regul Toxicol Pharmacol. 2017 Dec;91 Suppl 1:S14-S26. doi: 10.1016/j.yrtph.2017.09.020. Epub 2017 Sep 18.

引用本文的文献

1
2
Using Large Genomic Biobanks to Generate Insights into Genetic Kidney Disease.
Semin Nephrol. 2025 Jul 11:151651. doi: 10.1016/j.semnephrol.2025.151651.
3
Integrated multi-omics with machine learning to uncover the intricacies of kidney disease.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae364.
7
8
Precision Medicine in Diabetic Kidney Disease: A Narrative Review Framed by Lived Experience.
Can J Kidney Health Dis. 2023 Oct 30;10:20543581231209012. doi: 10.1177/20543581231209012. eCollection 2023.
9
Biomarker-Development Proteomics in Kidney Transplantation: An Updated Review.
Int J Mol Sci. 2023 Mar 9;24(6):5287. doi: 10.3390/ijms24065287.

本文引用的文献

1
Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease.
Circulation. 2017 Apr 25;135(17):1651-1664. doi: 10.1161/CIRCULATIONAHA.116.025446.
2
Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease.
Kidney Int. 2017 Jun;91(6):1426-1435. doi: 10.1016/j.kint.2017.01.007. Epub 2017 Mar 14.
3
Insights into Diabetic Kidney Disease Using Urinary Proteomics and Bioinformatics.
J Am Soc Nephrol. 2017 Apr;28(4):1050-1061. doi: 10.1681/ASN.2016091018. Epub 2017 Feb 3.
4
An overview of renal metabolomics.
Kidney Int. 2017 Jan;91(1):61-69. doi: 10.1016/j.kint.2016.08.021. Epub 2016 Sep 28.
5
Urinary proteomics using capillary electrophoresis coupled to mass spectrometry for diagnosis and prognosis in kidney diseases.
Curr Opin Nephrol Hypertens. 2016 Nov;25(6):494-501. doi: 10.1097/MNH.0000000000000278.
6
Metabolic Profiling of Impaired Cognitive Function in Patients Receiving Dialysis.
J Am Soc Nephrol. 2016 Dec;27(12):3780-3787. doi: 10.1681/ASN.2016010039. Epub 2016 Jul 21.
7
Trimethylamine N-Oxide and Cardiovascular Events in Hemodialysis Patients.
J Am Soc Nephrol. 2017 Jan;28(1):321-331. doi: 10.1681/ASN.2016030374. Epub 2016 Jul 19.
8
BIG: a large-scale data integration tool for renal physiology.
Am J Physiol Renal Physiol. 2016 Oct 1;311(4):F787-F792. doi: 10.1152/ajprenal.00249.2016. Epub 2016 Jun 8.
9
Targeting inflammation in diabetic kidney disease: early clinical trials.
Expert Opin Investig Drugs. 2016 Sep;25(9):1045-58. doi: 10.1080/13543784.2016.1196184. Epub 2016 Jun 13.
10
The nephrologist of tomorrow: towards a kidney-omic future.
Pediatr Nephrol. 2017 Mar;32(3):393-404. doi: 10.1007/s00467-016-3357-x. Epub 2016 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验