Suppr超能文献

“硒效应”区分了恶性疟原虫硫氧还蛋白还原酶中氧化还原活性半胱氨酸残基的作用。

A "Seleno Effect" Differentiates the Roles of Redox Active Cysteine Residues in Plasmodium falciparum Thioredoxin Reductase.

作者信息

O'Keefe John P, Dustin Christopher M, Barber Drew, Snider Gregg W, Hondal Robert J

机构信息

Department of Biochemistry , University of Vermont , 89 Beaumont Ave, Given Building Room B413 , Burlington , Vermont 05405 , United States.

出版信息

Biochemistry. 2018 Mar 20;57(11):1767-1778. doi: 10.1021/acs.biochem.8b00004. Epub 2018 Mar 6.

Abstract

Here, we introduce the concept of the "seleno effect" in the study of oxidoreductases that catalyze thiol/disulfide exchange reactions. In these reactions, selenium can replace sulfur as a nucleophile, electrophile, or leaving group, and the resulting change in rate (the seleno effect) is defined as k/ k. In solution, selenium accelerates the rate of thiol/disulfide exchange regardless of its chemical role (e.g., nucleophile or electrophile). Here we show that this is not the case for enzyme catalyzed reactions and that the magnitude of the seleno effect can differentiate the role of each sulfur atom of a disulfide bond between that of an electrophile or leaving group. We used selenium for sulfur substitution to study the thiol/disulfide exchange step that occurs between the N-terminal redox center and the C-terminal disulfide-containing β-hairpin motif of Plasmodium falciparum thioredoxin reductase (PfTrxR), which has the sequence Gly-Cys-Gly-Gly-Gly-Lys-Cys-Gly. We assayed a truncated PfTrxR enzyme missing this C-terminal tail for disulfide-reductase activity using synthetic peptide substrates in which either Cys or Cys was replaced with selenocysteine (Sec). The results show that substitution of Cys with Sec resulted in a nearly 9-fold decrease in the rate of reduction, while substitution of Cys resulted in a 1.5-fold increase in the rate of reduction. We also produced full-length, semisynthetic enzymes in which Sec replaced either of these two Cys residues and observed similar results using E. coli thioredoxin as the substrate. In this assay, the observed seleno effect ( k/ k) for the C535U mutant was 7.4, and that for the C540U mutant was 0.2.

摘要

在此,我们在催化硫醇/二硫键交换反应的氧化还原酶研究中引入“硒效应”这一概念。在这些反应中,硒可作为亲核试剂、亲电试剂或离去基团取代硫,由此产生的速率变化(硒效应)定义为k/k。在溶液中,无论硒的化学作用(如亲核试剂或亲电试剂)如何,它都会加速硫醇/二硫键交换的速率。在此我们表明,酶催化反应并非如此,并且硒效应的大小可以区分二硫键中每个硫原子作为亲电试剂或离去基团的作用。我们用硒取代硫来研究恶性疟原虫硫氧还蛋白还原酶(PfTrxR)的N端氧化还原中心与C端含二硫键的β-发夹基序之间发生的硫醇/二硫键交换步骤,PfTrxR的序列为Gly-Cys-Gly-Gly-Gly-Lys-Cys-Gly。我们使用合成肽底物检测了缺失该C端尾巴的截短型PfTrxR酶的二硫键还原酶活性,其中Cys或Cys被硒代半胱氨酸(Sec)取代。结果表明,用Sec取代Cys导致还原速率下降近9倍,而用Sec取代Cys导致还原速率提高1.5倍。我们还制备了全长半合成酶,其中Sec取代了这两个Cys残基中的任何一个,并以大肠杆菌硫氧还蛋白作为底物观察到了类似结果。在该检测中,C535U突变体的观察到的硒效应(k/k)为7.4,C540U突变体的为0.2。

相似文献

1
A "Seleno Effect" Differentiates the Roles of Redox Active Cysteine Residues in Plasmodium falciparum Thioredoxin Reductase.
Biochemistry. 2018 Mar 20;57(11):1767-1778. doi: 10.1021/acs.biochem.8b00004. Epub 2018 Mar 6.
3
Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.
Biochemistry. 2014 Feb 4;53(4):654-63. doi: 10.1021/bi400658g. Epub 2014 Jan 23.
4
A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.
Biochemistry. 2014 Jan 28;53(3):601-9. doi: 10.1021/bi400931k. Epub 2014 Jan 17.
9
Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?
Biochemistry. 2014 Jan 28;53(3):554-65. doi: 10.1021/bi400651x. Epub 2014 Jan 15.
10
Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis.
Biochemistry. 2007 Aug 21;46(33):9472-83. doi: 10.1021/bi7004812. Epub 2007 Jul 28.

引用本文的文献

1
Computational Insights into the Regeneration of Ovothiol and Ergothioneine and Their Selenium Analogues by Glutathione.
ACS Omega. 2022 Aug 31;7(36):31813-31821. doi: 10.1021/acsomega.2c02506. eCollection 2022 Sep 13.
2
Density Functional Theory Investigation of As(III) S-Adenosylmethionine Methyltransferase.
ACS Omega. 2020 Aug 12;5(33):21000-21006. doi: 10.1021/acsomega.0c02493. eCollection 2020 Aug 25.
4
Selenocysteine Substitution in a Class I Ribonucleotide Reductase.
Biochemistry. 2019 Dec 17;58(50):5074-5084. doi: 10.1021/acs.biochem.9b00973. Epub 2019 Dec 6.
5
Chemoenzymatic Semisynthesis of Proteins.
Chem Rev. 2020 Mar 25;120(6):3051-3126. doi: 10.1021/acs.chemrev.9b00450. Epub 2019 Nov 27.

本文引用的文献

1
Why Nature Chose Selenium.
ACS Chem Biol. 2016 Apr 15;11(4):821-41. doi: 10.1021/acschembio.6b00031. Epub 2016 Mar 21.
4
Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.
Biochemistry. 2014 Feb 4;53(4):654-63. doi: 10.1021/bi400658g. Epub 2014 Jan 23.
5
A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.
Biochemistry. 2014 Jan 28;53(3):601-9. doi: 10.1021/bi400931k. Epub 2014 Jan 17.
6
Strong, low-barrier hydrogen bonds may be available to enzymes.
Biochemistry. 2014 Jan 21;53(2):344-9. doi: 10.1021/bi4014566. Epub 2014 Jan 6.
8
Crystal structure of the Plasmodium falciparum thioredoxin reductase-thioredoxin complex.
J Mol Biol. 2013 Sep 23;425(18):3446-60. doi: 10.1016/j.jmb.2013.06.037. Epub 2013 Jul 9.
9
Selenocysteine in thiol/disulfide-like exchange reactions.
Antioxid Redox Signal. 2013 May 1;18(13):1675-89. doi: 10.1089/ars.2012.5013. Epub 2012 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验