Suppr超能文献

仿生支架和动态压缩增强了基于软骨细胞和 MSC 的组织工程软骨的特性。

Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage.

机构信息

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.

Cartilage Regeneration Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

J Tissue Eng Regen Med. 2018 May;12(5):1220-1229. doi: 10.1002/term.2653. Epub 2018 Mar 25.

Abstract

Adult chondrocytes are surrounded by a protein- and glycosaminoglycan-rich extracellular matrix and are subjected to dynamic mechanical compression during daily activities. The extracellular matrix and mechanical stimuli play an important role in chondrocyte biosynthesis and homeostasis. In this study, we aimed to develop scaffold and compressive loading conditions that mimic the native cartilage micro-environment and enable enhanced chondrogenesis for tissue engineering applications. Towards this aim, we fabricated porous scaffolds based on silk fibroin (SF) and SF with gelatin/chondroitin sulfate/hyaluronate (SF-GCH), seeded the scaffolds with either human bone marrow mesenchymal stromal cells (BM-MSCs) or chondrocytes, and evaluated their performance with and without dynamic compression. Human chondrocytes derived from osteoarthritic joints and BM-MSCs were seeded in scaffolds, precultured for 1 week, and subjected to compression with 10% dynamic strain at 1 Hz, 1 hr/day for 2 weeks. When dynamic compression was applied, chondrocytes significantly increased expression of aggrecan (ACAN) and collagen X (COL10A1) up to fivefold higher than free-swelling controls. In addition, dynamic compression dramatically improved the chondrogenesis and chondrocyte biosynthesis cultured in both SF and SF-GCH scaffolds evidenced by glycosaminoglycan (GAG) content, GAG/DNA ratio, and immunostaining of collagen type II and aggrecan. However, both chondrocytes and BM-MSCs cultured in SF-GCH scaffolds under dynamic compression showed higher GAG content and compressive modulus than those in SF scaffolds. In conclusion, the micro-environment provided by SF-GCH scaffolds and dynamic compression enhances chondrocyte biosynthesis and matrix accumulation, indicating their potential for cartilage tissue engineering applications.

摘要

成软骨细胞被富含蛋白质和糖胺聚糖的细胞外基质所包围,并在日常活动中受到动态机械压缩的影响。细胞外基质和机械刺激在软骨细胞的生物合成和稳态中起着重要作用。在这项研究中,我们旨在开发支架和压缩加载条件,模拟天然软骨微环境,并实现组织工程应用中的增强软骨生成。为此,我们基于丝素蛋白 (SF) 和丝素蛋白与明胶/硫酸软骨素/透明质酸 (SF-GCH) 制备了多孔支架,将支架接种到人骨髓间充质基质细胞 (BM-MSCs) 或软骨细胞中,并评估了有无动态压缩时的性能。从骨关节炎关节中分离的人软骨细胞和 BM-MSCs 被接种到支架中,预培养 1 周,然后在 1Hz、1 小时/天的条件下以 10%的动态应变进行压缩 2 周。当施加动态压缩时,软骨细胞的聚集蛋白聚糖 (ACAN) 和胶原 X (COL10A1) 的表达显著增加了五倍以上,高于自由膨胀对照。此外,动态压缩显著改善了在 SF 和 SF-GCH 支架中培养的软骨生成和软骨细胞生物合成,这表现在糖胺聚糖 (GAG) 含量、GAG/DNA 比以及胶原类型 II 和聚集蛋白聚糖的免疫染色上。然而,在动态压缩下培养于 SF-GCH 支架中的软骨细胞和 BM-MSCs 的 GAG 含量和压缩模量均高于培养于 SF 支架中的。总之,SF-GCH 支架提供的微环境和动态压缩增强了软骨细胞的生物合成和基质积累,表明其在软骨组织工程应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验