Bereiter Bernhard, Kawamura Kenji, Severinghaus Jeffrey P
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA.
Climate and Environmental Physics, Physics Institute, and Oeschger Center for Climate Research, University of Bern, 3012, Bern, Switzerland.
Rapid Commun Mass Spectrom. 2018 May 30;32(10):801-814. doi: 10.1002/rcm.8099.
The global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT.
The air from an 800-g ice sample - containing roughly 80 mL STP air - is extracted and processed to be analyzed on two independent dual-inlet isotope ratio mass spectrometers. The primary isotope ratios (δ N, δ Ar and δ Kr values) are obtained with precisions in the range of 1 per meg (0.001‰) per mass unit. The three elemental ratio values δKr/N , δXe/N and δXe/Kr are obtained using sequential (non-simultaneous) peak-jumping, reaching precisions in the range of 0.1-0.3‰.
The latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) - a potential source of measurement artifacts in other methods.
The precisions of the three elemental ratios δKr/N , δXe/N and δXe/Kr - which all contain the same MOT information - suggest smaller uncertainties for reconstructed MOTs (±0.3-0.1°C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, δXe/N provides the best constraints on the MOT under the given precisions followed by δXe/Kr, and δKr/N ; however, using all of them helps to detect methodological artifacts and issues with ice quality.
全球海洋是全球气候系统中最大的热缓冲器,但我们对其过去的变化知之甚少。重稀有气体(氪和氙)的同位素和元素比率,以及冰芯中捕获空气中的氩和氮,可用于重建过去的平均海洋温度(MOT)。在此,我们介绍两种相继开发的方法,以足够的精度测量这些参数,从而为过去MOT的变化提供新的限制。
从一个800克的冰样中提取空气(约含80毫升标准温度和压力下的空气),并进行处理,以便在两台独立的双进样同位素比率质谱仪上进行分析。主要同位素比率(δN、δAr和δKr值)的测量精度在每质量单位百万分之一(0.001‰)范围内。三个元素比率值δKr/N、δXe/N和δXe/Kr通过顺序(非同时)跳峰法获得,精度在0.1 - 0.3‰范围内。
该方法的最新版本在元素比率方面的精度比前一版本提高了30%至50%,样品通量提高了两倍。方法开发发现了封闭系统中一个意想不到的人为气体分馏源,这是由气体的绝热冷却和升温引起的(称为绝热分馏)——这是其他方法中潜在的测量假象源。
三个元素比率δKr/N、δXe/N和δXe/Kr(均包含相同的MOT信息)的精度表明,重建的MOT的不确定性(±0.3 - 0.1°C)比以前的研究更小。由于稀有气体对MOT变化的敏感性不同,在给定精度下,δXe/N对MOT的限制最佳,其次是δXe/Kr和δKr/N;然而,使用所有这些比率有助于检测方法假象和冰质量问题。