Suppr超能文献

用于解剖结构专用 3D 打印 MRI 线圈的 3D 打印材料的介电性能。

Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils.

机构信息

Department of Radiology, Wisconsin Institute for Medical Research, University of Wisconsin, Madison, WI 53705, USA; Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706, USA.

Department of Radiology, Wisconsin Institute for Medical Research, University of Wisconsin, Madison, WI 53705, USA.

出版信息

J Magn Reson. 2018 Apr;289:113-121. doi: 10.1016/j.jmr.2018.02.013. Epub 2018 Feb 21.

Abstract

Additive manufacturing provides a low-cost and rapid means to translate 3D designs into the construction of a prototype. For MRI, this type of manufacturing can be used to construct various components including the structure of RF coils. In this paper, we characterize the material properties (dielectric constant and loss tangent) of several common 3D-printed polymers in the MRI frequency range of 63-300 MHz (for MRI magnetic field strengths of 1.5-7 T), and utilize these material properties in full-wave electromagnetic simulations to design and construct a very low-cost subject/anatomy-specific 3D-printed receive-only RF coil that fits close to the body. We show that the anatomy-specific coil exhibits higher signal-to-noise ratio compared to a conventional flat surface coil.

摘要

增材制造为将 3D 设计转化为原型构建提供了一种低成本、快速的方法。对于 MRI 而言,这种制造方式可用于构建各种组件,包括 RF 线圈的结构。在本文中,我们在 MRI 频率范围为 63-300 MHz(适用于 1.5-7 T 的 MRI 磁场强度)下对几种常见的 3D 打印聚合物的材料特性(介电常数和损耗正切)进行了表征,并在全波电磁模拟中利用这些材料特性来设计和构建一个非常低成本的、针对特定受检者/解剖结构的 3D 打印接收专用 RF 线圈,使其与身体贴合。我们发现,与传统的平面线圈相比,该针对特定解剖结构的线圈具有更高的信噪比。

相似文献

1
Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils.
J Magn Reson. 2018 Apr;289:113-121. doi: 10.1016/j.jmr.2018.02.013. Epub 2018 Feb 21.
2
Custom, spray coated receive coils for magnetic resonance imaging.
Sci Rep. 2021 Jan 29;11(1):2635. doi: 10.1038/s41598-021-81833-0.
3
Materials and methods for higher performance screen-printed flexible MRI receive coils.
Magn Reson Med. 2017 Aug;78(2):775-783. doi: 10.1002/mrm.26399. Epub 2016 Sep 9.
4
Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging.
J Magn Reson. 2016 Aug;269:146-151. doi: 10.1016/j.jmr.2016.06.005. Epub 2016 Jun 7.
5
A hybrid inverse approach applied to the design of lumped-element RF coils.
IEEE Trans Biomed Eng. 1999 Mar;46(3):353-61. doi: 10.1109/10.748988.
6
Multimodal surface coils for low field MR imaging.
Magn Reson Imaging. 2024 Oct;112:107-115. doi: 10.1016/j.mri.2024.07.005. Epub 2024 Jul 4.
7
In-depth study of the electromagnetics of ultrahigh-field MRI.
NMR Biomed. 2007 Feb;20(1):58-68. doi: 10.1002/nbm.1094.
8
Intracranial microvascular imaging at 7 T MRI with transceiver RF coils.
Magn Reson Imaging. 2014 Nov;32(9):1133-8. doi: 10.1016/j.mri.2014.07.006. Epub 2014 Aug 2.
9
Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI.
J Comput Assist Tomogr. 1999 Nov-Dec;23(6):879-90. doi: 10.1097/00004728-199911000-00011.
10
Basic Principles of and Practical Guide to Clinical MRI Radiofrequency Coils.
Radiographics. 2022 May-Jun;42(3):898-918. doi: 10.1148/rg.210110. Epub 2022 Apr 8.

引用本文的文献

2
Improving protocols for whole-body magnetic resonance imaging: oncological and inflammatory applications.
Pediatr Radiol. 2023 Jun;53(7):1420-1442. doi: 10.1007/s00247-022-05478-5. Epub 2022 Aug 19.
4
Custom, spray coated receive coils for magnetic resonance imaging.
Sci Rep. 2021 Jan 29;11(1):2635. doi: 10.1038/s41598-021-81833-0.
5
3D-printed integrative probeheads for magnetic resonance.
Nat Commun. 2020 Nov 13;11(1):5793. doi: 10.1038/s41467-020-19711-y.
6
Rapid development of application-specific flexible MRI receive coils.
Phys Med Biol. 2020 Sep 24;65(19):19NT01. doi: 10.1088/1361-6560/abaffb.
7
Applications of 3D printing in small animal magnetic resonance imaging.
J Med Imaging (Bellingham). 2019 Apr;6(2):021605. doi: 10.1117/1.JMI.6.2.021605. Epub 2019 May 15.

本文引用的文献

1
Materials and methods for higher performance screen-printed flexible MRI receive coils.
Magn Reson Med. 2017 Aug;78(2):775-783. doi: 10.1002/mrm.26399. Epub 2016 Sep 9.
2
Screen-printed flexible MRI receive coils.
Nat Commun. 2016 Mar 10;7:10839. doi: 10.1038/ncomms10839.
3
3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer.
Med Eng Phys. 2014 Oct;36(10):1373-80. doi: 10.1016/j.medengphy.2014.06.008. Epub 2014 Aug 1.
4
Dielectric characterization of PCL-based thermoplastic materials for microwave diagnostic and therapeutic applications.
IEEE Trans Biomed Eng. 2012 Mar;59(3):627-33. doi: 10.1109/TBME.2011.2157918. Epub 2011 May 27.
5
Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation.
J Magn Reson. 2009 Sep;200(1):147-52. doi: 10.1016/j.jmr.2009.06.005. Epub 2009 Jun 9.
6
Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging.
Phys Med Biol. 2008 May 21;53(10):2677-92. doi: 10.1088/0031-9155/53/10/016. Epub 2008 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验