Suppr超能文献

养老院最低数据集 3.0 死亡率风险评分(MRS3)的制定和验证。

Development and Validation of the Nursing Home Minimum Data Set 3.0 Mortality Risk Score (MRS3).

机构信息

Center of Innovation in Long-Term Services and Supports, U.S. Department of Veterans Affairs Medical Center, Providence, Rhode Island.

Center for Gerontology and Healthcare Research, Brown University School of Public Health, Providence, Rhode Island.

出版信息

J Gerontol A Biol Sci Med Sci. 2019 Jan 16;74(2):219-225. doi: 10.1093/gerona/gly044.

Abstract

BACKGROUND

To develop a score to predict mortality using the Minimum Data Set 3.0 (MDS 3.0) that can be readily calculated from items collected during nursing home (NH) residents' admission assessments.

PARTICIPANTS

We developed a training cohort of Medicare beneficiaries newly admitted to United States NHs during 2012 (N = 1,426,815) and a testing cohort from 2013 (N = 1,160,964).

METHODS

Data came from the MDS 3.0 assessments linked to the Medicare Beneficiary Summary File. Using the training dataset, we developed a composite MDS 3.0 Mortality Risk Score (MRS3) consisting of 17 clinical items and patients' age groups based on their relation to 30-day mortality. We assessed the calibration and discrimination of the MRS3 in predicting 30- and 60-day mortality and compared its performance to the Charlson Comorbidity Index and the clinician's assessment of 6-month prognosis measured at admission.

RESULTS

The 30- and 60-day mortality rates for the testing population were 2.8% and 5.6%, respectively. Results from logistic regression models suggest that the MRS3 performed well in predicting death within 30 and 60 days (C-Statistics of 0.744 [95% confidence limit (CL) = 0.741, 0.747] and 0.709 [95% CL = 0.706, 0.711], respectively). The MRS3 was a superior predictor of mortality compared to the Charlson Comorbidity Index (C-statistics of 0.611 [95% CL = 0.607, 0.615] and 0.608 [95% CL = 0.605, 0.610]) and the clinicians' assessments of patients' 6-month prognoses (C-statistics of 0.543 [95% CL = 0.542, 0.545] and 0.528 [95% CL = 0.527, 0.529]).

CONCLUSIONS

The MRS3 is a good predictor of mortality and can be useful in guiding decision-making, informing plans of care, and adjusting for patients' risk of mortality.

摘要

背景

开发一个基于最小数据集 3.0(MDS 3.0)的评分系统,用于预测死亡率,该评分系统可通过在疗养院(NH)居民入院评估期间收集的项目进行计算。

参与者

我们开发了一个培训队列,其中包括 2012 年新进入美国 NH 的医疗保险受益人(N=1,426,815),以及一个来自 2013 年的测试队列(N=1,160,964)。

方法

数据来自 MDS 3.0 评估,与医疗保险受益人的摘要文件相关联。使用训练数据集,我们开发了一个由 17 个临床项目和患者年龄组组成的复合 MDS 3.0 死亡率风险评分(MRS3),这些项目和年龄组与 30 天死亡率有关。我们评估了 MRS3 在预测 30 天和 60 天死亡率方面的校准和区分能力,并将其与 Charlson 合并症指数和入院时临床医生对 6 个月预后的评估进行了比较。

结果

测试人群的 30 天和 60 天死亡率分别为 2.8%和 5.6%。逻辑回归模型的结果表明,MRS3 在预测 30 天和 60 天内死亡方面表现良好(C 统计量分别为 0.744 [95%置信区间(CL)=0.741, 0.747] 和 0.709 [95% CL = 0.706, 0.711])。与 Charlson 合并症指数(C 统计量分别为 0.611 [95% CL = 0.607, 0.615] 和 0.608 [95% CL = 0.605, 0.610])和临床医生对患者 6 个月预后的评估相比,MRS3 是死亡率的更好预测指标(C 统计量分别为 0.543 [95% CL = 0.542, 0.545] 和 0.528 [95% CL = 0.527, 0.529])。

结论

MRS3 是死亡率的良好预测指标,可用于指导决策、制定护理计划,并调整患者的死亡率风险。

相似文献

1
Development and Validation of the Nursing Home Minimum Data Set 3.0 Mortality Risk Score (MRS3).
J Gerontol A Biol Sci Med Sci. 2019 Jan 16;74(2):219-225. doi: 10.1093/gerona/gly044.
3
Mortality-related factors and 1-year survival in nursing home residents.
J Am Geriatr Soc. 2003 Feb;51(2):213-21. doi: 10.1046/j.1532-5415.2003.51060.x.
4
Estimating prognosis for nursing home residents with advanced dementia.
JAMA. 2004 Jun 9;291(22):2734-40. doi: 10.1001/jama.291.22.2734.
5
Algorithm for Identifying Nursing Home Days Using Medicare Claims and Minimum Data Set Assessment Data.
Med Care. 2016 Nov;54(11):e73-e77. doi: 10.1097/MLR.0000000000000109.
6
Adaptation and Initial Validation of Minimum Data Set (MDS) Mortality Risk Index to MDS Version 3.0.
J Am Geriatr Soc. 2018 Dec;66(12):2353-2359. doi: 10.1111/jgs.15579. Epub 2018 Oct 18.
7
Trajectories Over the First Year of Long-Term Care Nursing Home Residence.
J Am Med Dir Assoc. 2018 Apr;19(4):333-341. doi: 10.1016/j.jamda.2017.09.021. Epub 2017 Nov 3.
9
Preliminary derivation of a Nursing Home Confusion Assessment Method based on data from the Minimum Data Set.
J Am Geriatr Soc. 2007 Jul;55(7):1099-105. doi: 10.1111/j.1532-5415.2007.01239.x.

引用本文的文献

1
Do Medicare Accountable Care Organizations Impact Health Care Utilization among Long-Stay Nursing Home Residents?
J Am Med Dir Assoc. 2025 Apr;26(4):105518. doi: 10.1016/j.jamda.2025.105518. Epub 2025 Mar 5.
2
Prognostication in Alzheimer's disease and related dementias.
J Am Geriatr Soc. 2025 Jan;73(1):329-332. doi: 10.1111/jgs.19130. Epub 2024 Aug 8.
3
Predictors of mortality shortly after entering a long-term care facility.
Age Ageing. 2024 May 1;53(5). doi: 10.1093/ageing/afae098.
4
Understanding the Utility of Less Than Six-Month Prognosis Using Administrative Data Among U.S. Nursing Home Residents With Cancer.
Palliat Med Rep. 2024 Mar 28;5(1):127-135. doi: 10.1089/pmr.2023.0047. eCollection 2024.
5
Real-world Effectiveness of mRNA COVID-19 Vaccines Among US Nursing Home Residents Aged ≥65 Years in the Pre-Delta and High Delta Periods.
Open Forum Infect Dis. 2024 Jan 29;11(3):ofae051. doi: 10.1093/ofid/ofae051. eCollection 2024 Mar.
7
Adoption of sodium-glucose cotransporter-2 inhibitors among prescribers caring for nursing home residents.
J Am Geriatr Soc. 2023 Aug;71(8):2585-2592. doi: 10.1111/jgs.18360. Epub 2023 Apr 20.
8
The relationship between exposure to Hurricane Harvey and mortality among nursing home residents.
J Am Geriatr Soc. 2023 Mar;71(3):888-894. doi: 10.1111/jgs.18143. Epub 2022 Dec 21.
10
Dementia diagnosis in the hospital and outcomes among patients with advanced dementia documented in the Minimum Data Set.
J Am Geriatr Soc. 2022 Mar;70(3):846-853. doi: 10.1111/jgs.17564. Epub 2021 Nov 19.

本文引用的文献

1
Operationalizing a frailty index using routine blood and urine tests.
Clin Interv Aging. 2017 Jun 28;12:1029-1040. doi: 10.2147/CIA.S131987. eCollection 2017.
2
Delirium During Postacute Nursing Home Admission and Risk for Adverse Outcomes.
J Am Geriatr Soc. 2017 Jul;65(7):1470-1475. doi: 10.1111/jgs.14823. Epub 2017 Mar 24.
3
The Minimum Data Set 3.0 Cognitive Function Scale.
Med Care. 2017 Sep;55(9):e68-e72. doi: 10.1097/MLR.0000000000000334.
4
Death in Long-term Care: A Brief Report Examining Factors Associated with Death within 31 Days of Assessment.
Palliat Care. 2015 Feb 1;9:1-5. doi: 10.4137/PCRT.S20347. eCollection 2015.
5
Functional Improvement Among Short-Stay Nursing Home Residents in the MDS 3.0.
J Am Med Dir Assoc. 2015 Jun 1;16(6):470-4. doi: 10.1016/j.jamda.2014.11.018. Epub 2015 Feb 3.
6
Algorithm for Identifying Nursing Home Days Using Medicare Claims and Minimum Data Set Assessment Data.
Med Care. 2016 Nov;54(11):e73-e77. doi: 10.1097/MLR.0000000000000109.
8
Sensitivity and specificity of the Minimum Data Set 3.0 discharge data relative to Medicare claims.
J Am Med Dir Assoc. 2014;15(11):819-24. doi: 10.1016/j.jamda.2014.06.017. Epub 2014 Aug 30.
10
Finding Gertrude: The resident's voice in Minimum Data Set 3.0.
J Am Med Dir Assoc. 2014;15(11):802-6. doi: 10.1016/j.jamda.2014.01.012. Epub 2014 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验