Suppr超能文献

纳米颗粒-融合蛋白复合物可预防结核分枝杆菌感染。

Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection.

机构信息

St George's Medical School, University of London, London SW17 0RE, UK.

Lionex GmbH, Braunschweig, Germany.

出版信息

Mol Ther. 2018 Mar 7;26(3):822-833. doi: 10.1016/j.ymthe.2017.12.016. Epub 2017 Dec 22.

Abstract

Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4 and CD8 T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development.

摘要

结核病(TB)是传染病导致死亡的主要原因,而目前的疫苗卡介苗(BCG)并不充分。纳米颗粒(NPs)是一种新兴的疫苗技术,在肿瘤学和传染病方面取得了近期的成功。NPs 已被开发为抗原递送系统,并因其佐剂特性而被利用。然而,其免疫活性的机制仍不清楚。在这里,我们开发了一种基于黄色巴西棕榈蜡 NPs(YC-NPs)的新型粘膜 TB 疫苗(Nano-FP1),该 NPs 涂覆有由三种结核分枝杆菌(Mtb)抗原组成的融合蛋白:Acr、Ag85B 和 HBHA。用 Nano-FP1 对 BCG 接种的小鼠进行粘膜免疫,可显著增强对低剂量雾化 Mtb 挑战的动物的保护。与 BCG 相比,Nano-FP1 控制细菌与细胞免疫的显著增强有关,包括 CD4 和 CD8 T 细胞增殖、肺部组织驻留记忆 T 细胞(Trm)的定植以及细胞因子的多功能性。除了这些作用外,我们还观察到了强大的体液反应,例如产生针对 Ag85B 的血清 IgG 和呼吸道 IgA。最后,我们发现 YC-NPs 能够通过非常规的 IRF-3 相关激活特征激活抗原呈递细胞,而不会产生潜在的有害炎症介质,为疫苗功效和未来的发展提供了一个机制框架。

相似文献

1
Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection.
Mol Ther. 2018 Mar 7;26(3):822-833. doi: 10.1016/j.ymthe.2017.12.016. Epub 2017 Dec 22.
2
Mucosal Delivery of Fusion Proteins with Spores Enhances Protection against Tuberculosis by Bacillus Calmette-Guérin.
Front Immunol. 2018 Mar 12;9:346. doi: 10.3389/fimmu.2018.00346. eCollection 2018.
10
An intranasal nanoparticle vaccine elicits protective immunity against Mycobacterium tuberculosis.
Vaccine. 2024 Sep 17;42(22):125909. doi: 10.1016/j.vaccine.2024.04.055. Epub 2024 May 3.

引用本文的文献

1
Respiratory delivered vaccines: Current status and perspectives in rational formulation design.
Acta Pharm Sin B. 2024 Dec;14(12):5132-5160. doi: 10.1016/j.apsb.2024.08.026. Epub 2024 Nov 4.
2
Advancements in Nanoparticle-Based Adjuvants for Enhanced Tuberculosis Vaccination: A Review.
Vaccines (Basel). 2024 Nov 27;12(12):1335. doi: 10.3390/vaccines12121335.
3
Salmonella cancer therapy metabolically disrupts tumours at the collateral cost of T cell immunity.
EMBO Mol Med. 2024 Dec;16(12):3057-3088. doi: 10.1038/s44321-024-00159-2. Epub 2024 Nov 18.
6
Clinical manifestations and immune response to tuberculosis.
World J Microbiol Biotechnol. 2023 May 24;39(8):206. doi: 10.1007/s11274-023-03636-x.
7
Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8 T Cells.
Front Immunol. 2022 Jun 17;13:884148. doi: 10.3389/fimmu.2022.884148. eCollection 2022.
9
Advancing Adjuvants for Therapeutics.
Front Immunol. 2021 Oct 25;12:740117. doi: 10.3389/fimmu.2021.740117. eCollection 2021.
10
Human mucosal tissue-resident memory T cells in health and disease.
Mucosal Immunol. 2022 Mar;15(3):389-397. doi: 10.1038/s41385-021-00467-7. Epub 2021 Nov 6.

本文引用的文献

1
Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate.
Plant Biotechnol J. 2017 Dec;15(12):1590-1601. doi: 10.1111/pbi.12741. Epub 2017 Jul 15.
3
TB Alliance regimen development for multidrug-resistant tuberculosis.
Int J Tuberc Lung Dis. 2016 Dec 1;20(12):38-41. doi: 10.5588/ijtld.16.0069.
4
Dendritic Cell Targeting Effectively Boosts T Cell Responses Elicited by an HIV Multiepitope DNA Vaccine.
Front Immunol. 2017 Feb 7;8:101. doi: 10.3389/fimmu.2017.00101. eCollection 2017.
9
Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models.
Lancet Glob Health. 2016 Nov;4(11):e806-e815. doi: 10.1016/S2214-109X(16)30199-1. Epub 2016 Oct 6.
10
A Functional Role for Antibodies in Tuberculosis.
Cell. 2016 Oct 6;167(2):433-443.e14. doi: 10.1016/j.cell.2016.08.072. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验