Department of Economics and Finance, University of Canterbury, Christchurch, New Zealand.
Res Synth Methods. 2018 Jun;9(2):285-311. doi: 10.1002/jrsm.1298. Epub 2018 May 16.
This paper studies the performance of the FAT-PET-PEESE (FPP) procedure, a commonly employed approach for addressing publication bias in the economics and business meta-analysis literature. The FPP procedure is generally used for 3 purposes: (1) to test whether a sample of estimates suffers from publication bias, (2) to test whether the estimates indicate that the effect of interest is statistically different from zero, and (3) to obtain an estimate of the mean true effect. Our findings indicate that the FPP procedure performs well in the basic but unrealistic environment of fixed effects, where all estimates are assumed to derive from a single population value and sampling error is the only reason for why studies produce different estimates. However, when we study its performance in more realistic data environments, where there is heterogeneity in the population effects across and within studies, the FPP procedure becomes unreliable for the first 2 purposes and is less efficient than other estimators when estimating overall mean effect. Further, hypothesis tests about the mean true effect are frequently unreliable. We corroborate our findings by recreating the simulation framework of Stanley and Doucouliagos (2017) and repeat our tests using their framework.
本文研究了 FAT-PET-PEESE(FPP)程序的性能,这是一种常用于经济学和商业荟萃分析文献中处理发表偏倚的方法。FPP 程序通常有 3 个用途:(1)测试样本估计值是否存在发表偏倚;(2)测试估计值是否表明感兴趣的效应在统计上是否与零不同;(3)获得均值真实效应的估计值。我们的研究结果表明,FPP 程序在固定效应的基本但不现实的环境中表现良好,在这种环境中,所有的估计值都假定来自单个总体值,并且抽样误差是研究产生不同估计值的唯一原因。然而,当我们研究其在更现实的数据环境中的性能时,即研究之间和研究内部的总体效应存在异质性时,FPP 程序在前两个目的中变得不可靠,并且在估计总体均值效应时效率低于其他估计量。此外,关于真实均值效应的假设检验也经常不可靠。我们通过重现 Stanley 和 Doucouliagos(2017)的模拟框架来证实我们的发现,并使用他们的框架重复我们的测试。