Suppr超能文献

基于多模光纤的光学分辨率光声显微镜

Optical resolution photoacoustic microscopy based on multimode fibers.

作者信息

Moothanchery Mohesh, Bi Renzhe, Kim Jin Young, Jeon Seungwan, Kim Chulhong, Olivo Malini

机构信息

Singapore Bioimaging Consortium, Agency for Science Technology and Research (ASTAR), 11 Biopolis Way, Singapore, 138667, Singapore.

Both authors contributed equally.

出版信息

Biomed Opt Express. 2018 Feb 15;9(3):1190-1197. doi: 10.1364/BOE.9.001190. eCollection 2018 Mar 1.

Abstract

Photoacoustic microscopy (PAM) is a multiscale imaging technique. In optical-resolution photoacoustic microscopy (OR-PAM), a single mode (SM) fiber is normally used as the source of optical excitation to be focused into a diffraction-limited spot. Recent advances in OR-PAM have improved its imaging speed using microelectromechanical systems (MEMS). Here we report for the first time the use of a multimode (MM) fiber as the optical excitation source for high resolution OR-PAM imaging. A high-speed MEMS scanner based OR-PAM system combined with the mechanical movement to provide wide area imaging was used. The use of multimode fiber for achieving tight optical focus would make the optical alignment easier and high repetition rate light delivery possible for high-speed OR-PAM imaging. A lateral resolution of 3.5 µm and axial resolution of 27 µm with ~1.5 mm imaging depth was successfully demonstrated using the system. The efficacy of multimode fibers for achieving tight focus is beneficial for developing high-resolution photoacoustic endoscopy systems and can be combined with other optical endoscopic imaging modalities as well.

摘要

光声显微镜(PAM)是一种多尺度成像技术。在光学分辨率光声显微镜(OR-PAM)中,通常使用单模(SM)光纤作为光激发源,将其聚焦到衍射极限光斑中。OR-PAM的最新进展利用微机电系统(MEMS)提高了其成像速度。在此,我们首次报道使用多模(MM)光纤作为高分辨率OR-PAM成像的光激发源。使用了一种基于高速MEMS扫描仪的OR-PAM系统,该系统结合机械运动以提供大面积成像。使用多模光纤实现紧密的光学聚焦将使光学对准更容易,并为高速OR-PAM成像实现高重复率的光传输成为可能。使用该系统成功展示了横向分辨率为3.5 µm,轴向分辨率为27 µm,成像深度约为1.5 mm的结果。多模光纤实现紧密聚焦的功效有利于开发高分辨率光声内窥镜系统,并且也可以与其他光学内窥镜成像方式相结合。

相似文献

1
Optical resolution photoacoustic microscopy based on multimode fibers.
Biomed Opt Express. 2018 Feb 15;9(3):1190-1197. doi: 10.1364/BOE.9.001190. eCollection 2018 Mar 1.
2
Acoustic resolution photoacoustic microscopy based on microelectromechanical systems scanner.
J Biophotonics. 2020 Feb;13(2):e201960127. doi: 10.1002/jbio.201960127. Epub 2019 Nov 19.
3
High-speed simultaneous multiscale photoacoustic microscopy.
J Biomed Opt. 2019 Aug;24(8):1-7. doi: 10.1117/1.JBO.24.8.086001.
4
A fiber-coupled laser diode design for reflection mode optical resolution photoacoustic microscopy.
Ultrasonics. 2023 Jul;132:107008. doi: 10.1016/j.ultras.2023.107008. Epub 2023 Apr 20.
8
Photoacoustic microscopy for real-time monitoring of near-infrared optical absorbers inside biological tissue.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11527. doi: 10.1117/1.JBO.29.S1.S11527. Epub 2024 Mar 9.
9
Handheld Photoacoustic Microscopy Probe.
Sci Rep. 2017 Oct 17;7(1):13359. doi: 10.1038/s41598-017-13224-3.

引用本文的文献

1
Current trends in the characterization and monitoring of vascular response to cancer therapy.
Cancer Imaging. 2024 Oct 23;24(1):143. doi: 10.1186/s40644-024-00767-8.
2
The sound of blood: photoacoustic imaging in blood analysis.
Med Nov Technol Devices. 2023 Jun;18. doi: 10.1016/j.medntd.2023.100219. Epub 2023 Mar 4.
3
State of the Art in Carbon Nanomaterials for Photoacoustic Imaging.
Biomedicines. 2022 Jun 10;10(6):1374. doi: 10.3390/biomedicines10061374.
6
[Progress of motion artifact correction in photoacoustic microscopy and photoacoustic tomography].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):369-378. doi: 10.7507/1001-5515.202009062.
7
Deep Learning Enables Superior Photoacoustic Imaging at Ultralow Laser Dosages.
Adv Sci (Weinh). 2020 Dec 21;8(3):2003097. doi: 10.1002/advs.202003097. eCollection 2021 Feb.
8
Photoacoustic imaging with fiber optic technology: A review.
Photoacoustics. 2020 Oct 22;20:100211. doi: 10.1016/j.pacs.2020.100211. eCollection 2020 Dec.
9
Towards non-contact photoacoustic imaging [review].
Photoacoustics. 2020 Sep 23;20:100207. doi: 10.1016/j.pacs.2020.100207. eCollection 2020 Dec.

本文引用的文献

1
studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy.
Biomed Opt Express. 2017 Nov 9;8(12):5483-5492. doi: 10.1364/BOE.8.005483. eCollection 2017 Dec 1.
2
Handheld Photoacoustic Microscopy Probe.
Sci Rep. 2017 Oct 17;7(1):13359. doi: 10.1038/s41598-017-13224-3.
4
6
A practical guide to photoacoustic tomography in the life sciences.
Nat Methods. 2016 Jul 28;13(8):627-38. doi: 10.1038/nmeth.3925.
7
Tutorial on photoacoustic tomography.
J Biomed Opt. 2016 Jun;21(6):61007. doi: 10.1117/1.JBO.21.6.061007.
8
Design of flexible multi-mode fiber endoscope.
Opt Express. 2015 Oct 19;23(21):26905-18. doi: 10.1364/OE.23.026905.
9
High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking.
Biomed Opt Express. 2015 Mar 12;6(4):1241-52. doi: 10.1364/BOE.6.001241. eCollection 2015 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验