Suppr超能文献

基于区域描述符的胎儿神经超声关键临床解剖结构分割学习。

Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor.

作者信息

Huang Ruobing, Namburete Ana, Noble Alison

机构信息

University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Oxford, United Kingdom.

出版信息

J Med Imaging (Bellingham). 2018 Jan;5(1):014007. doi: 10.1117/1.JMI.5.1.014007. Epub 2018 Mar 10.

Abstract

We present a general framework for automatic segmentation of fetal brain structures in ultrasound images inspired by recent advances in machine learning. The approach is based on a region descriptor that characterizes the shape and local intensity context of different neurological structures without explicit models. To validate our framework, we present experiments to segment two fetal brain structures of clinical importance that have quite different ultrasonic appearances-the corpus callosum (CC) and the choroid plexus (CP). Results demonstrate that our approach achieves high region segmentation accuracy (dice coefficient: [Formula: see text] CC, [Formula: see text] CP) relative to human delineation, whereas the derived automated biometry measurement deviations are within human intra/interobserver variations. The use of our proposed method may help to standardize intracranial anatomy measurements for both the routine examination and the detection of congenital conditions in the future.

摘要

我们提出了一个受机器学习最新进展启发的用于超声图像中胎儿脑结构自动分割的通用框架。该方法基于一种区域描述符,该描述符无需显式模型即可表征不同神经结构的形状和局部强度上下文。为了验证我们的框架,我们进行了实验,以分割两个具有不同超声外观的具有临床重要性的胎儿脑结构——胼胝体(CC)和脉络丛(CP)。结果表明,相对于人工勾勒,我们的方法实现了较高的区域分割精度(骰子系数:[公式:见原文] CC,[公式:见原文] CP),而导出的自动生物测量偏差在人类观察者内/观察者间的变化范围内。我们提出的方法的使用可能有助于在未来的常规检查和先天性疾病检测中实现颅内解剖测量的标准化。

相似文献

1
Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor.
J Med Imaging (Bellingham). 2018 Jan;5(1):014007. doi: 10.1117/1.JMI.5.1.014007. Epub 2018 Mar 10.
2
Automatic image quality assessment and measurement of fetal head in two-dimensional ultrasound image.
J Med Imaging (Bellingham). 2017 Apr;4(2):024001. doi: 10.1117/1.JMI.4.2.024001. Epub 2017 Apr 17.
3
Fetal Neurosonogaphy: Ultrasound and Magnetic Resonance Imaging in Competition.
Ultraschall Med. 2016 Dec;37(6):555-557. doi: 10.1055/s-0042-117142. Epub 2016 Dec 15.
4
Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images.
Physiol Meas. 2018 Oct 22;39(10):105007. doi: 10.1088/1361-6579/aae255.
5
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
Med Phys. 2019 Feb;46(2):576-589. doi: 10.1002/mp.13300. Epub 2018 Dec 17.
6
Inferior vena cava segmentation with parameter propagation and graph cut.
Int J Comput Assist Radiol Surg. 2017 Sep;12(9):1481-1499. doi: 10.1007/s11548-017-1582-9. Epub 2017 Apr 18.
7
Manually segmented template library for 8-year-old pediatric brain MRI data with 16 subcortical structures.
J Med Imaging (Bellingham). 2014 Oct;1(3):034502. doi: 10.1117/1.JMI.1.3.034502. Epub 2014 Oct 28.
8
Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework.
Phys Med Biol. 2019 Apr 8;64(8):085006. doi: 10.1088/1361-6560/ab0ea6.
10
Lesion Segmentation in Automated 3D Breast Ultrasound: Volumetric Analysis.
Ultrason Imaging. 2018 Mar;40(2):97-112. doi: 10.1177/0161734617737733. Epub 2017 Nov 28.

引用本文的文献

1
Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review.
J Clin Med. 2024 Sep 22;13(18):5626. doi: 10.3390/jcm13185626.

本文引用的文献

1
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
2
Deep Learning in Medical Image Analysis.
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
5
Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model.
Med Biol Eng Comput. 2013 Sep;51(9):1021-30. doi: 10.1007/s11517-013-1082-1. Epub 2013 May 18.
6
Learning to detect cells using non-overlapping extremal regions.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):348-56. doi: 10.1007/978-3-642-33415-3_43.
7
Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly.
Neuroimage. 2012 Apr 15;60(3):1819-31. doi: 10.1016/j.neuroimage.2012.01.128. Epub 2012 Feb 10.
8
Auto-context and its application to high-level vision tasks and 3D brain image segmentation.
IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1744-57. doi: 10.1109/TPAMI.2009.186.
10
Fetal neuroimaging: ultrasound, MRI, or both?
Obstet Gynecol Surv. 2008 Nov;63(11):733-45. doi: 10.1097/OGX.0b013e318186d3ea.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验