Huang Ruobing, Namburete Ana, Noble Alison
University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Oxford, United Kingdom.
J Med Imaging (Bellingham). 2018 Jan;5(1):014007. doi: 10.1117/1.JMI.5.1.014007. Epub 2018 Mar 10.
We present a general framework for automatic segmentation of fetal brain structures in ultrasound images inspired by recent advances in machine learning. The approach is based on a region descriptor that characterizes the shape and local intensity context of different neurological structures without explicit models. To validate our framework, we present experiments to segment two fetal brain structures of clinical importance that have quite different ultrasonic appearances-the corpus callosum (CC) and the choroid plexus (CP). Results demonstrate that our approach achieves high region segmentation accuracy (dice coefficient: [Formula: see text] CC, [Formula: see text] CP) relative to human delineation, whereas the derived automated biometry measurement deviations are within human intra/interobserver variations. The use of our proposed method may help to standardize intracranial anatomy measurements for both the routine examination and the detection of congenital conditions in the future.
我们提出了一个受机器学习最新进展启发的用于超声图像中胎儿脑结构自动分割的通用框架。该方法基于一种区域描述符,该描述符无需显式模型即可表征不同神经结构的形状和局部强度上下文。为了验证我们的框架,我们进行了实验,以分割两个具有不同超声外观的具有临床重要性的胎儿脑结构——胼胝体(CC)和脉络丛(CP)。结果表明,相对于人工勾勒,我们的方法实现了较高的区域分割精度(骰子系数:[公式:见原文] CC,[公式:见原文] CP),而导出的自动生物测量偏差在人类观察者内/观察者间的变化范围内。我们提出的方法的使用可能有助于在未来的常规检查和先天性疾病检测中实现颅内解剖测量的标准化。