Suppr超能文献

基于最优图的灵活流形学习及其在图像和视频表示中的应用。

Flexible Manifold Learning With Optimal Graph for Image and Video Representation.

出版信息

IEEE Trans Image Process. 2018 Jun;27(6):2664-2675. doi: 10.1109/TIP.2018.2810515.

Abstract

Graph-based dimensionality reduction techniques have been widely and successfully applied to clustering and classification tasks. The basis of these algorithms is the constructed graph which dictates their performance. In general, the graph is defined by the input affinity matrix. However, the affinity matrix derived from the data is sometimes suboptimal for dimension reduction as the data used are very noisy. To address this issue, we propose the projective unsupervised flexible embedding models with optimal graph (PUFE-OG). We build an optimal graph by adjusting the affinity matrix. To tackle the out-of-sample problem, we employ a linear regression term to learn a projection matrix. The optimal graph and the projection matrix are jointly learned by integrating the manifold regularizer and regression residual into a unified model. The experimental results on the public benchmark datasets demonstrate that the proposed PUFE-OG outperforms state-of-the-art methods.

摘要

基于图的降维技术已被广泛而成功地应用于聚类和分类任务。这些算法的基础是构建的图,决定了它们的性能。通常,图是由输入的相似性矩阵定义的。然而,由于数据非常嘈杂,从数据中得出的相似性矩阵有时并不适合降维。为了解决这个问题,我们提出了具有最优图的投影无监督灵活嵌入模型(PUFE-OG)。我们通过调整相似性矩阵来构建最优图。为了解决样本外问题,我们采用线性回归项来学习投影矩阵。最优图和投影矩阵通过将流形正则项和回归残差集成到一个统一的模型中共同学习。在公共基准数据集上的实验结果表明,所提出的 PUFE-OG 优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验