Research Center for Astronomy, Academy of Athens Soranou Efesiou 4, GR-115 27 Athens, Greece.
Phys Rev E. 2018 Feb;97(2-1):022215. doi: 10.1103/PhysRevE.97.022215.
We study the global and the local transport and diffusion in the case of the standard map, by calculating the diffusion exponent μ. In the global case, we find that the mean diffusion exponent for the whole phase space is either μ=1, denoting normal diffusion, or μ=2 denoting anomalous diffusion (and ballistic motion). The mean diffusion of the whole phase space is normal when no accelerator mode exists and it is anomalous (ballistic) when accelerator mode islands exist even if their area is tiny in the phase space. The local value of the diffusion exponent inside the normal islands of stability is μ=0, while inside the accelerator mode islands it is μ=2. The local value of the diffusion exponent in the chaotic region outside the islands of stability converges always to the value of 1. The time of convergence can be very long, depending on the distance from the accelerator mode islands and the value of the nonlinearity parameter K. For some values of K, the stickiness around the accelerator mode islands is maximum and initial conditions inside the sticky region can be dragged in a ballistic motion for extremely long times of the order of 10^{7} or more but they will finally end up in normal mode diffusion with μ=1. We study, in particular, cases with maximum stickiness and cases where normal and accelerator mode islands coexist. We find general analytical solutions of periodic orbits of accelerator type and we give evidence that they are much more numerous than the normal periodic orbits. Thus, we expect that in every small interval ΔK of the nonlinearity parameter K of the standard map there exist smaller intervals of accelerator mode islands. However, these smaller intervals are in general very small, so that in the majority of the values of K the global diffusion is normal.
我们通过计算扩散指数 μ 来研究标准映射中的全局和局部输运和扩散。在全局情况下,我们发现整个相空间的平均扩散指数要么是 μ=1,表明正常扩散,要么是 μ=2 表示异常扩散(和弹道运动)。当不存在加速器模式时,整个相空间的平均扩散是正常的,而当加速器模式岛即使在相空间中面积很小的情况下存在时,它是异常的(弹道)。正常稳定岛内部扩散指数的局部值为 μ=0,而在加速器模式岛内部为 μ=2。稳定岛外部混沌区域的局部扩散指数值始终收敛于 1。收敛时间可能非常长,取决于与加速器模式岛的距离和非线性参数 K 的值。对于某些 K 值,加速器模式岛周围的粘性最大,初始条件在粘性区域内可以在弹道运动中被拖动很长时间,大约为 10^{7}或更长,但它们最终将以 μ=1 的正常模式扩散结束。我们特别研究了最大粘性的情况和正常模式和加速器模式岛共存的情况。我们找到了加速器类型的周期轨道的一般解析解,并证明它们比正常周期轨道多得多。因此,我们预计在标准映射的非线性参数 K 的每个小间隔 ΔK 中,都会存在较小的加速器模式岛间隔。然而,这些较小的间隔通常非常小,因此在大多数 K 值下,全局扩散是正常的。